Systems-informed genome mining for electroautotrophic microbial production

被引:8
|
作者
Abel, Anthony J. [1 ]
Hilzinger, Jacob M. [2 ]
Arkin, Adam P. [2 ,3 ]
Clark, Douglas S. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
关键词
Electromicrobial production; Genome mining; Multiphysics modeling; Microbial electrosynthesis; Extracellular electron transfer; CO2; REDUCTION; ELECTROCHEMICAL REDUCTION; GENETIC SYSTEM; GROWTH; ABUNDANCE; STRAIN; ELECTROSYNTHESIS; EFFICIENCIES; PERFORMANCE; METABOLISM;
D O I
10.1016/j.bioelechem.2022.108054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electromicrobial production (EMP) systems can store renewable energy and CO2 in many-carbon molecules inaccessible to abiotic electrochemistry. Here, we develop a multiphysics model to investigate the fundamental and practical limits of EMP enabled by direct electron uptake. We also identify potential electroautotrophic organisms and metabolic engineering strategies to enable electroautotrophy in organisms lacking the native capability. Systematic model comparisons of microbial respiration and carbon fixation strategies revealed that, under aerobic conditions, the CO2 fixation rate is limited to < 6 lmol/cm(2)/ hr by O(2 )mass transport despite efficient electron utilization. In contrast, anaerobic nitrate respiration enables CO2 fixation rates > 50 lmol/cm(2)/hr for microbes using the reductive tricarboxylic acid cycle. Phylogenetic analysis, validated by recapitulating experimental demonstrations of electroautotrophy, predicted multiple probable electroautotrophic organisms and a significant number of genetically tractable strains that require heterologous expression of < 5 proteins to gain electroautotrophic function. The model and analysis presented here will guide microbial engineering and reactor design for practical EMP systems. (C)& nbsp;2022 Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Electrosynthesis of acetate from inorganic carbon (HCO3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES)
    Hou, Xia
    Huang, Liping
    Zhou, Peng
    Tian, Fuping
    Tao, Ye
    Li Puma, Gianluca
    JOURNAL OF HAZARDOUS MATERIALS, 2019, 371 : 463 - 473
  • [42] Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation
    Nan, L. Braga
    Trably, E.
    Santa-Catalina, G.
    Bernet, N.
    Delgenes, J-P
    Escudie, R.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [43] Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems
    Qu, Yuanyuan
    Zhang, Xuwang
    Ma, Qiao
    Deng, Jie
    Deng, Ye
    Van Nostrand, Joy D.
    Wu, Liyou
    He, Zhili
    Qin, Yujia
    Zhou, Jiti
    Zhou, Jizhong
    PLOS ONE, 2015, 10 (09):
  • [44] Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems
    Aarons, Sharon Rose
    O'Connor, Catherine R.
    Hosseini, Hossein M.
    Gourley, Cameron J. P.
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2009, 84 (01) : 81 - 92
  • [45] Whole-Genome Sequence and Interaction Analysis in the Production of Six Enzymes From the Three Bacillus Strains Present in a Commercial Direct-Fed Microbial (Norum™) Using a Bliss Independence Test
    Hernandez-Patlan, Daniel
    Solis-Cruz, Bruno
    Latorre, Juan D.
    Merino-Guzman, Ruben
    Morales Rodriguez, Miguel
    Ausland, Catie
    Hernandez-Velasco, Xochitl
    Ortiz Holguin, Oscar
    Delgado, Ramiro
    Hargis, Billy M.
    Singh, Pallavi
    Tellez-Isaias, Guillermo
    FRONTIERS IN VETERINARY SCIENCE, 2022, 9
  • [46] N2O production using native nos-deficient denitrifying bacterial strains screened by a genome mining approach
    Oshiki M.
    Ishimaru M.
    Hatamoto M.
    Yamaguchi T.
    Araki N.
    Okabe S.
    Bioresource Technology Reports, 2020, 11
  • [47] Towards new carbon-neutral food systems: Combining carbon capture and utilization with microbial protein production
    Van Peteghem, L.
    Sakarika, M.
    Matassa, S.
    Pikaar, I.
    Ganigue, R.
    Rabaey, K.
    BIORESOURCE TECHNOLOGY, 2022, 349
  • [48] Effect of mixtures of legume species on ruminal fermentation, methane, and microbial nitrogen production in batch and continuous culture (RUSITEC) systems
    Kelln, B. M.
    Penner, G. B.
    Acharya, S. N.
    McAllisterc, T. A.
    McKinnon, J. J.
    Saleem, A. M.
    Biligetu, B.
    Lardner, H. A.
    CANADIAN JOURNAL OF ANIMAL SCIENCE, 2023, 103 (04) : 326 - 337
  • [49] Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems
    Bernard, Edward
    Larkin, Robert P.
    Tavantzis, Stellos
    Erich, M. Susan
    Alyokhin, Andrei
    Sewell, Gary
    Lannan, Andrew
    Gross, Serena D.
    APPLIED SOIL ECOLOGY, 2012, 52 : 29 - 41
  • [50] Comparison of the Effects of Different Crop Production Systems on Soil Physico-Chemical Properties and Microbial Activity under Winter Wheat
    Gajda, Anna Maria
    Czyz, Ewa Antonina
    Ukalska-Jaruga, Aleksandra
    AGRONOMY-BASEL, 2020, 10 (08):