Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors

被引:50
作者
Barzegar, Farshad [1 ]
Bello, Abdulhakeem [1 ]
Fashedemi, Omobosede O. [2 ]
Dangbegnon, Julien K. [1 ]
Momodu, Damilola Y. [1 ]
Taghizadeh, Fatemeh [1 ]
Manyala, Ncholu [1 ]
机构
[1] Univ Pretoria, Inst Appl Mat, Dept Phys, Carbon Technol & Mat, ZA-0028 Pretoria, South Africa
[2] Univ Pretoria, Dept Chem, ZA-0002 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Porous carbon; Supercapacitor; Equivalent circuit; Electrochemical performance; ENERGY; SUPERCAPACITOR; TEMPERATURE; ELECTROLYTE; ACTIVATION; STORAGE;
D O I
10.1016/j.electacta.2015.08.148
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A scalable production of high surface area nanoporous carbon material (similar to 2994 m(2) g(-1)) with good distribution of micro-, meso- and macro-pores was hydrothermally synthesized using both cheap polymers and graphene foam as carbon sources. The as synthesised material shows a unique interconnected porous graphitic structure. The electrochemical double-layer capacitor fabricated from this nanoporous carbon material exhibited a superior supercapacitive performance of 188 F g(-1) at current density 0.5 A g(-1). This corresponded to areal capacitance of 6.3 mu F cm(-2) coupled with a high energy of 0.56 mu Wh cm(-2) (16.71 Wh kg(-1)) and a power density of 13.39 mu W cm(-2) (401 mu W kg(-1)) due to extended potential window of 16V in KOH aqueous electrolyte. Moreover, no capacitance loss after 10,000 cycles was observed, owing to the unique structure and large surface area of the active material. The outstanding performance of this material as supercapacitor electrode shows that it has great potential for high performance energy-related applications. (C) Crown Copyright 2015 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 36 条
[1]   High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide [J].
Bello, Abdulhakeem ;
Fashedemi, Omobosede O. ;
Lekitima, Joel N. ;
Fabiane, Mopeli ;
Dodoo-Arhin, David ;
Ozoemena, Kenneth I. ;
Gogotsi, Yury ;
Johnson, Alan T. Charlie ;
Manyala, Ncholu .
AIP ADVANCES, 2013, 3 (08)
[2]   High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte [J].
Bichat, M. P. ;
Raymundo-Pinero, E. ;
Beguin, F. .
CARBON, 2010, 48 (15) :4351-4361
[3]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[4]  
Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
[5]   A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution [J].
Demarconnay, L. ;
Raymundo-Pinero, E. ;
Beguin, F. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1275-1278
[6]   Novel insight into neutral medium as electrolyte for high-voltage supercapacitors [J].
Fic, Krzysztof ;
Lota, Grzegorz ;
Meller, Mikolaj ;
Frackowiak, Elzbieta .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5842-5850
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]   Ionic liquids as electrolytes [J].
Galinski, Maciej ;
Lewandowski, Andrzej ;
Stepniak, Izabela .
ELECTROCHIMICA ACTA, 2006, 51 (26) :5567-5580
[9]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[10]   Water diffusion into radiation crosslinked PVA-PVP network hydrogels [J].
Hill, David J. T. ;
Whittaker, Andrew K. ;
Zainuddin .
RADIATION PHYSICS AND CHEMISTRY, 2011, 80 (02) :213-218