On the spectrum of banded Hankel matrices

被引:2
作者
Angerer, Wolfgang P.
机构
[1] not available, 6200 Jenbach
关键词
Toeplitz matrix; Hankel matrix; Chebyshev polynomials; SYMMETRIC TOEPLITZ MATRICES; EIGENVALUES;
D O I
10.1016/j.laa.2013.04.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a weak limit law for the distribution of eigenvalues of a tridiagonal Hankel matrix. The result is given in terms of the push-forward of an arcsine density under a combination of Chebyshev polynomials. We also advance a conjecture concerning Hankel matrices with more than three non-zero skew diagonals. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1496 / 1505
页数:10
相关论文
共 8 条
[1]   Eigenvalues of a statistical mechanics matrix [J].
Angerer, Wolfgang P. ;
Zamora, Adolfo .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (06) :1411-1419
[2]  
[Anonymous], 2022, DEC FREE OP SOURC PA
[3]  
BOTTCHER A, 2005, SPECTRAL PROPERTIES
[4]   An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices [J].
Elouafi, Mohamed .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) :2986-2998
[5]  
Martinez-Avendano R.A., 2007, INTRO OPERATORS HARD
[6]  
Maxima.sourceforge.net, 2012, MAX COMP ALG SYST VE
[8]   Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners [J].
Yueh, Wen-Chyuan ;
Cheng, Sui Sun .
ANZIAM JOURNAL, 2008, 49 (03) :361-387