Hessenberg Varieties for the Minimal Nilpotent Orbit

被引:4
作者
Abe, Hiraku [1 ,2 ]
Crooks, Peter [3 ]
机构
[1] Osaka City Univ, Math Inst, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[2] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[3] Leibniz Univ Hannover, Inst Differential Geometry, Welfengarten 1, D-30167 Hannover, Germany
关键词
minimal nilpotent orbit; Hessenberg variety; equivariant cohomology; EQUIVARIANT COHOMOLOGY RINGS; S-1-EQUIVARIANT COHOMOLOGY; PETERSON VARIETIES; REPRESENTATIONS; FORMULA; IDEALS;
D O I
10.4310/PAMQ.2016.v12.n2.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected, simply-connected complex simple algebraic group G, we examine a class of Hessenberg varieties associated with the minimal nilpotent orbit. In particular, we compute the Poincare polynomials and irreducible components of these varieties in Lie type A. Furthermore, we show these Hessenberg varieties to be GKM with respect to the action of a maximal torus T.G. The corresponding GKM graphs are then explicitly determined. Finally, we present the ordinary and T-equivariant cohomology rings of our varieties as quotients of those of the flag variety.
引用
收藏
页码:183 / 223
页数:41
相关论文
共 32 条
[1]  
Abe H., 2015, ARXIV151209072
[2]  
[Anonymous], 1981, Algebraic topology
[3]  
Brosnan T., 2015, ARXIV151100773
[4]  
Carrell J.B., 1994, Proc. Sympos. Pure Math, V56, P53
[5]  
Chriss N., 2010, Modern Birkhauser Classics
[6]  
DEMARI F, 1992, T AM MATH SOC, V332, P529
[7]   SOME CHARACTERIZATIONS OF BRUHAT ORDERING ON A COXETER GROUP AND DETERMINATION OF RELATIVE MOBIUS FUNCTION [J].
DEODHAR, VV .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :187-198
[9]   Monk's rule and Giambelli's formula for Peterson varieties of all Lie types [J].
Drellich, Elizabeth .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) :539-575
[10]   The equivariant cohomology rings of Peterson varieties [J].
Fukukawa, Yukiko ;
Harada, Megumi ;
Masuda, Mikiya .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) :1147-1159