Distributional Solutions of the Stationary Nonlinear Schrodinger Equation: Singularities, Regularity and Exponential Decay

被引:1
作者
Mandel, Rainer [1 ]
Reichel, Wolfgang [1 ]
机构
[1] KIT, Dept Math, D-76128 Karlsruhe, Germany
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2013年 / 32卷 / 01期
关键词
Nonlinear Schrodinger equation; singular solutions; variational methods; distributional solutions; SCALAR FIELD-EQUATIONS; WEAK SOLUTIONS; BOUNDARY SINGULARITIES; DELTA-U; EXISTENCE; DOMAINS; CONVERGENCE; WAVES;
D O I
10.4171/ZAA/1474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation -Delta u + V(x)u = Gamma(x)vertical bar u vertical bar(p-1)u in R-n where the spectrum of -Delta + V(x) is positive. In the case n >= 3 we use variational methods to prove that for all p is an element of (n/n-2, n/n-2 + epsilon) there exist distributional solutions with a point singularity at the origin provided epsilon > 0 is sufficiently small and V, Gamma are bounded on R-n \ B-1(0) and satisfy suitable Holder-type conditions at the origin. In the case n = 1, 2 or n >= 3, 1 < p < n/n-2, however, we show that every distributional solution of the more general equation -Delta u + V(x)u = g(x, u) is a bounded strong solution if V is bounded and g satisfies certain growth conditions.
引用
收藏
页码:55 / 82
页数:28
相关论文
共 33 条
[1]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[2]  
[Anonymous], 1966, SEMINAIRE MATH SUPER
[3]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]  
Brezis H., 1996, ADV DIFFERENTIAL EQU, V1, P73
[6]  
Dancer E.N., 2002, ANN SCUOLA NORM SUP, V30, P535
[7]   Boundary singularities for weak solutions of semilinear elliptic problems [J].
del Pino, Manuel ;
Musso, Monica ;
Pacard, Frank .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) :241-272
[8]   The Toda system and multiple-end solutions of autonomous planar elliptic problems [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Pacard, Frank ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2010, 224 (04) :1462-1516
[9]  
Dolbeault J., 2002, DIFFER INTEGRAL EQU, V15, P1459
[10]  
Gidas B., 1981, Math. Anal. Appl., VofAdv, P369