Heat Transfer and Fluid Flow Analysis of Nanofluids in Corrugated Plate Heat Exchangers Using Computational Fluid Dynamics Simulation

被引:27
作者
Jokar, Amir [1 ]
O'Halloran, Steven P. [2 ]
机构
[1] ThermoFluids Tech, Vancouver, WA 98665 USA
[2] Univ Portland, Dept Mech Engn, Portland, OR 97203 USA
关键词
heat exchanger; corrugated plate; PHE; CFD; Al2O3; nanofluid; NON-NEWTONIAN NANOFLUIDS; COPPER-WATER NANOFLUID; THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; LAMINAR-FLOW; NATURAL-CONVECTION; CFD SIMULATION; VISCOSITY; TUBE; BEHAVIOR;
D O I
10.1115/1.4007777
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effect of Al2O3 nanofluids in a corrugated plate heat exchanger (PHE) were investigated in this study using computational fluid dynamics (CFD). Nanofluids have received attention recently as potential fluids to increase heat transfer in simple geometries, and work to investigate nanofluids in different systems is ongoing. In this study, a three-channel corrugated PHE with a width of 127 mm, length of 56 mm and channel thickness of 2 mm was investigated. The hot fluid in the system flows through the middle channel while the cold fluid flows through the two side channels. Three chevron angle configurations were considered for the simulation: 60 deg/60 deg, 27 deg/60 deg, and 27 deg/27 deg. Commercially available CFD software (ANSYS FLUENT) was used for the simulations. Numerical simulations were conducted for four Al2O3-water nanofluid concentrations: 1%, 2%, 3%, and 4% by volume. In addition, plain water was simulated for comparison. The simulation results show that although the thermal conductivity does increase with increasing nanofluid volume fraction, heat transfer decreases slightly with increasing nanofluid volume fraction. This decrease can be attributed to increased fluid viscosity with increasing volume fraction and the complex flow regimes of nanofluids in the three-dimensional geometries of PHEs.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Experimental investigations of the viscosity of nanofluids at low temperatures [J].
Aladag, Bahadir ;
Halelfadl, Salma ;
Doner, Nimeti ;
Mare, Thierry ;
Duret, Steven ;
Estelle, Patrice .
APPLIED ENERGY, 2012, 97 :876-880
[2]   Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube [J].
Bianco, Vincenzo ;
Manca, Oronzio ;
Nardini, Sergio .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :341-349
[3]   Numerical investigation of transient thermal and fluidynamic fields in an executive aircraft cabin [J].
Bianco, Vincenzo ;
Manca, Oronzio ;
Nardini, Sergio ;
Roma, Mario .
APPLIED THERMAL ENGINEERING, 2009, 29 (16) :3418-3425
[4]   Viscosity of water based SWCNH and TiO2 nanofluids [J].
Bobbo, Sergio ;
Fedele, Laura ;
Benetti, Anna ;
Colla, Laura ;
Fabrizio, Monica ;
Pagura, Cesare ;
Barison, Simona .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2012, 36 :65-71
[5]   Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids) [J].
Chen, Haisheng ;
Yang, Wei ;
He, Yurong ;
Ding, Wong ;
Zhang, Lingling ;
Tan, Chunqing ;
Lapkin, Alexei A. ;
Bavykin, Dmitry V. .
POWDER TECHNOLOGY, 2008, 183 (01) :63-72
[6]   Heat transfer in Nanofluids - A review [J].
Das, Sarit Kumar ;
Choi, Stephen U. S. ;
Patel, Hrishikesh E. .
HEAT TRANSFER ENGINEERING, 2006, 27 (10) :3-19
[7]   A critical review of convective heat transfer of nanofluids [J].
Daungthongsuk, Weerapun ;
Wongwises, Somchai .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (05) :797-817
[8]   Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger [J].
Duangthongsuk, Weerapun ;
Wongwises, Somchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (7-8) :2059-2067
[9]   Series solutions of non-Newtonian nanofluids with Reynolds' model and Vogel's model by means of the homotopy analysis method [J].
Ellahi, R. ;
Raza, M. ;
Vafai, K. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (7-8) :1876-1891
[10]  
Hayes N, 2009, ASHRAE TRAN, V115, P599