Machine Learning Calabi-Yau Metrics

被引:33
作者
Ashmore, Anthony [1 ]
He, Yang-Hui [2 ,3 ,4 ]
Ovrut, Burt A. [1 ]
机构
[1] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[2] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[3] City Univ London, Dept Math, London EC1V 0HB, England
[4] NanKai Univ, Sch Phys, Tianjin 300071, Peoples R China
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2020年 / 68卷 / 09期
基金
英国科学技术设施理事会;
关键词
generalized geometry; supergravity backgrounds; SPECTRA; MODEL; MSSM;
D O I
10.1002/prop.202000068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine-learning algorithm decreasing the time required by between one and two orders of magnitude.
引用
收藏
页数:23
相关论文
共 74 条
[11]  
Braun V, 2006, J HIGH ENERGY PHYS
[12]  
Braun V, 2005, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2005/06/039
[13]   A heterotic standard model [J].
Braun, V ;
He, YH ;
Ovrut, BA ;
Pantev, T .
PHYSICS LETTERS B, 2005, 618 (1-4) :252-258
[14]   Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi-Yau manifolds [J].
Braun, Volker ;
Brelidze, Tamaz ;
Douglas, Michael R. ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[15]   Calabi-Yau metrics for quotients and complete intersections [J].
Braun, Volker ;
Brelidze, Tamaz ;
Douglas, Michael R. ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05)
[16]   The exact MSSM spectrum from string theory [J].
Braun, Volker ;
He, Yang-Hui ;
Ovrut, Burt A. ;
Pantev, Tony .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05)
[17]  
Brodie C. R., ARXIV190608730HEPTH
[18]   Getting CICY high [J].
Bull, Kieran ;
He, Yang-Hui ;
Jejjala, Vishnu ;
Mishra, Challenger .
PHYSICS LETTERS B, 2019, 795 :700-706
[19]   Machine learning CICY threefolds [J].
Bull, Kieran ;
He, Yang-Hui ;
Jejjala, Vishnu ;
Mishra, Challenger .
PHYSICS LETTERS B, 2018, 785 :65-72
[20]   VACUUM CONFIGURATIONS FOR SUPERSTRINGS [J].
CANDELAS, P ;
HOROWITZ, GT ;
STROMINGER, A ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 258 (01) :46-74