Hybrid Photonic-Plasmonic Cavity Design for Very Large Purcell Factors at Telecommunication Wavelengths

被引:19
作者
Barreda, Angela [1 ,2 ]
Mercade, Laura [3 ,4 ]
Zapata-Herrera, Mario [5 ]
Aizpurua, Javier [5 ,6 ]
Martinez, Alejandro [3 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Solid State Phys, Helmholtzweg 3, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Appl Phys, Albert Einstein Str 15, D-07745 Jena, Germany
[3] Univ Politecn Valencia, Nanophoton Technol Ctr, Camino Vera S-N, Valencia 46022, Spain
[4] Univ Barcelona, Fac Fis, Dept Engn Elect & Biomed, Barcelona, Spain
[5] Ctr Mixto CSIC UPV EHU, Ctr Fis Mat, P Manuel de Lardizabal 5, Donostia San Sebastian 20018, Basque Country, Spain
[6] Donostia Int Phys Ctr, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Basque Country, Spain
基金
欧盟地平线“2020”;
关键词
LABEL-FREE DETECTION; SLOT WAVE-GUIDE; EMISSION; MODE;
D O I
10.1103/PhysRevApplied.18.044066
中图分类号
O59 [应用物理学];
学科分类号
摘要
Hybrid photonic-plasmonic cavities can be tailored to display high Q factors and extremely small mode volumes simultaneously, which ultimately results in large values of the Purcell factor, FP. Amongst the different hybrid configurations, those based on a nanoparticle-on-a-mirror plasmonic cavity provide one of the lowest mode volumes, though so far their operation has been constrained to wavelengths below 1 Am. Here, we propose a hybrid configuration consisting of a silicon photonic crystal cavity with a slot at its center in which a gold nanoparticle is introduced. This hybrid system operates at telecom wavelengths and provides high Q-factor values (Q 105) and small normalized mode volumes (Vm 10-4), leading to extremely large Purcell-factor values, FP 107 - 108. The proposed cavity could be used in different applications such as molecular optomechanics, bio-and chemosensing, efficient quantum emitters, or enhanced Raman spectroscopy in the relevant telecom-wavelength regime.
引用
收藏
页数:9
相关论文
共 59 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[3]   Hybrid whispering gallery mode/plasmonic chain ring resonators for biosensing [J].
Arbabi, Ehsan ;
Kamali, Seyedeh Mahsa ;
Arnold, Stephen ;
Goddard, Lynford L. .
APPLIED PHYSICS LETTERS, 2014, 105 (23)
[4]   Self-assembled monolayer assisted bonding of Si and InP [J].
Bakish, I. ;
Artel, V. ;
Ilovitsh, T. ;
Shubely, M. ;
Ben-Ezra, Y. ;
Zadok, A. ;
Sukenik, C. N. .
OPTICAL MATERIALS EXPRESS, 2012, 2 (08) :1141-1148
[5]   Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics [J].
Barbry, M. ;
Koval, P. ;
Marchesin, F. ;
Esteban, R. ;
Borisov, A. G. ;
Aizpurua, J. ;
Sanchez-Portal, D. .
NANO LETTERS, 2015, 15 (05) :3410-3419
[6]   Metal, dielectric and hybrid nanoantennas for enhancing the emission of single quantum dots: A comparative study [J].
Barreda, A. ;
Hell, S. ;
Weissflog, M. A. ;
Minovich, A. ;
Pertsch, T. ;
Staude, I .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 276 (276)
[7]   Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration [J].
Barreda, Angela, I ;
Zapata-Herrera, Mario ;
Palstra, Isabelle M. ;
Mercade, Laura ;
Aizpurua, Javier ;
Koenderink, A. Femius ;
Martinez, Alejandro .
PHOTONICS RESEARCH, 2021, 9 (12) :2398-2419
[8]   Extreme nanophotonics from ultrathin metallic gaps [J].
Baumberg, Jeremy J. ;
Aizpurua, Javier ;
Mikkelsen, Maiken H. ;
Smith, David R. .
NATURE MATERIALS, 2019, 18 (07) :668-678
[9]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[10]   Room-Temperature Optical Picocavities below 1 nm3 Accessing Single-Atom Geometries [J].
Carnegie, Cloudy ;
Griffiths, Jack ;
de Nijs, Bart ;
Readman, Charlie ;
Chikkaraddy, Rohit ;
Deacon, William M. ;
Zhang, Yao ;
Szabo, Istvan ;
Rosta, Edina ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (24) :7146-7151