An Application of Catalan Numbers on Cayley Tree of Order 2: Single Polygon Counting

被引:0
作者
Pah, C. H. [1 ]
机构
[1] Int Islamic Univ Malaysia, Fac Sci, Dept Computat & Theoret Sci, Kuantan 25250, Pahang, Malaysia
关键词
Cayley tree; phase transition; contour method; Catalan numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a problem on finding the number of different single connected component, containing a fixed root for a given number of vertices on semi-infinite Cayley tree. The solution of this problem is the well known Catalan numbers. The result is then extended to the complete graph. Then, we gave it suitable estimate for the given problem.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1994, Concrete Mathematics: a Foundation for Computer Science
[2]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[3]  
BORGS C, 2004, STAT PHYS EXPANSION
[4]  
DOBRUSHIN RL, 1965, SOV PHYS DOKL, V10, P111
[5]  
GEORGII HO, 1998, GIBBS MEASURES PHASE
[6]   PEIERLS PROOF OF SPONTANEOUS MAGNETIZATION IN 2-DIMENSIONAL ISING FERROMAGNET [J].
GRIFFITHS, RB .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 136 (2A) :A437-&
[7]  
Minlos R. A., 2000, Introduction to mathematical statistical physics
[8]   On Ising's model of ferromagnetism [J].
Peierls, R .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1936, 32 :477-481
[9]   PHASE-DIAGRAMS OF CLASSICAL LATTICE SYSTEMS [J].
PIROGOV, SA ;
SINAI, YG .
THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 25 (03) :1185-1192
[10]   PHASE-DIAGRAMS OF CLASSICAL LATTICE SYSTEMS CONTINUATION [J].
PIROGOV, SA ;
SINAI, YG .
THEORETICAL AND MATHEMATICAL PHYSICS, 1976, 26 (01) :39-49