Some fixed point theorems of the Schauder and the Krasnosel'skii type and application to nonlinear transport equations

被引:72
作者
Latrach, K
Taoudi, MA
Zeghal, A
机构
[1] Fac Sci & Tech, Dept Math, Equipe Anal Math & Calcul Sci, Beni Mellal 23000, Morocco
[2] Univ Corse, Dept Math, F-20250 Corte, France
[3] Fac Sci Semlalia, Dept Math, Marrakech 40000, Morocco
关键词
fixed points theorems; weakly compact operators; measure of weaknoncompactness; nonlinear transport equations;
D O I
10.1016/j.jde.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [J. Math. Phys. 37 (1996) 1336-1348] the existence of solutions to the boundary value problem (1.1)-(1.2) was analyzed for isotropic scattering kernels oil L-p spaces for p E (1, 00). Due to the lack of compactness in L-1 spaces, the problem remains open for p = 1. The purpose of this work is to extend this analysis to the case p = 1 for anisotropic scattering kernels. Our strategy consists in establishing new variants of the Schauder and the Krasnosel'skii fixed point theorems in general Banach spaces involving weakly compact operators. In L-1 context these theorems provide an adequate tool to attack the problem. Our analysis uses the specific properties of weakly compacts sets on L-1 spaces and the weak compactness results for one-dimensional transport equations established in [J. Math. Anal. Appl. 252 (2000) 767-789]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 271
页数:16
相关论文
共 18 条
  • [1] [Anonymous], 1980, FIXED POINT THEOREMS
  • [2] APPELL J, 1984, B UNIONE MAT ITAL, V3B, P497
  • [3] Appell J., 1988, EXPO MATH, V6, P209
  • [4] Krasnoselskii's fixed point theorem for weakly continuous maps
    Barroso, CS
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (1-2) : 25 - 31
  • [5] Breznitz S., 1990, NOT YET PSYCHOL INQ, V1, P17, DOI [10.1207/s15327965pli0101_3, DOI 10.1207/S15327965PLI0101_3]
  • [6] DAUTRAY R, 1988, ANAL MATH CALEUL NUM, V9
  • [7] De Blasi FS., 1977, Bull. Math. Soc. Sci. Math. Repub. Soc. Rouman, V21, P259
  • [8] Dunford N., 1958, Linear Operators Part I
  • [9] Greenberg W, 1987, BOUNDARY VALUE PROBL, V23
  • [10] KRASNOSELSKII M. A., 1976, INTEGRAL OPERATORS S