Zero forcing number;
Minimum rank;
Tree cover number;
Positive semidefinite zero forcing number;
Maximum positive semidefinite nullity;
MAXIMUM NULLITY;
GRAPH MINORS;
TREE-WIDTH;
NUMBER;
RANK;
D O I:
10.1007/s10878-015-9936-0
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
The positive semidefinite zero forcing number of a graph is a parameter that is important in the study of minimum rank problems. In this paper, we focus on the algorithmic aspects of computing this parameter. We prove that it is NP-complete to find the positive semidefinite zero forcing number of a given graph, and this problem remains NP-complete even for graphs with maximum vertex degree 7. We present a linear time algorithm for computing the positive semidefinite zero forcing number of generalized series-parallel graphs. We introduce the constrained tree cover number and apply it to improve lower bounds for positive semidefinite zero forcing. We also give formulas for the constrained tree cover number and the tree cover number on graphs with special structures.
机构:
Univ Maribor, Fac Nat Sci & Math, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Ljubljana, Slovenia
Bresar, Bostjan
Kos, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Ljubljana, Slovenia
Kos, Tim
Daniel Tones, Pablo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Rosario, Dept Matemat, Rosario, Argentina
Consejo Nacl Invest Cient & Tecn, Rosario, ArgentinaUniv Maribor, Fac Nat Sci & Math, Ljubljana, Slovenia