Lower bounds for positive semidefinite zero forcing and their applications

被引:5
|
作者
Yang, Boting [1 ]
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Zero forcing number; Minimum rank; Tree cover number; Positive semidefinite zero forcing number; Maximum positive semidefinite nullity; MAXIMUM NULLITY; GRAPH MINORS; TREE-WIDTH; NUMBER; RANK;
D O I
10.1007/s10878-015-9936-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The positive semidefinite zero forcing number of a graph is a parameter that is important in the study of minimum rank problems. In this paper, we focus on the algorithmic aspects of computing this parameter. We prove that it is NP-complete to find the positive semidefinite zero forcing number of a given graph, and this problem remains NP-complete even for graphs with maximum vertex degree 7. We present a linear time algorithm for computing the positive semidefinite zero forcing number of generalized series-parallel graphs. We introduce the constrained tree cover number and apply it to improve lower bounds for positive semidefinite zero forcing. We also give formulas for the constrained tree cover number and the tree cover number on graphs with special structures.
引用
收藏
页码:81 / 105
页数:25
相关论文
共 50 条
  • [21] Zero and Total Forcing Dense Graphs
    Davila, Randy
    Henning, Michael
    Pepper, Ryan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (03) : 619 - 634
  • [22] Zero forcing sets and bipartite circulants
    Meyer, Seth A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (04) : 888 - 900
  • [23] A SHORT PROOF FOR A LOWER BOUND ON THE ZERO FORCING NUMBER
    Fuerst, Maximilian
    Rautenbach, Dieter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 355 - 360
  • [24] Maximum nullity and zero forcing number of graphs with rank at most 4
    Vatandoost, Ebrahim
    Nozari, Katayoun
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [25] Proof of a conjecture on the zero forcing number of a graph
    Lu, Leihao
    Wu, Baoyindureng
    Tang, Zixing
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 233 - 237
  • [26] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [27] On minimum rank and zero forcing sets of a graph
    Huang, Liang-Hao
    Chang, Gerard J.
    Yeh, Hong-Gwa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2961 - 2973
  • [28] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [29] Strong structural controllability of networks: Comparison of bounds using distances and zero forcing
    Yazicioglu, Yasin
    Shabbir, Mudassir
    Abbas, Waseem
    Koutsoukos, Xenofon
    AUTOMATICA, 2022, 146
  • [30] Blocking zero forcing processes in Cartesian products of graphs
    Karst, Nathaniel
    Shen, Xierui
    Troxell, Denise Sakai
    Vu, MinhKhang
    DISCRETE APPLIED MATHEMATICS, 2020, 285 (285) : 380 - 396