Obtaining a Stabilizing Prediction Horizon in Quadratic Programming Model Predictive Control

被引:0
作者
Morgenstern, Dimitri [1 ]
Goerges, Daniel [2 ]
Wirsen, Andreas [1 ]
机构
[1] Fraunhofer Inst Ind Math, Dept Syst Anal Prognosis & Control, Kaiserslautern, Germany
[2] Univ Kaiserslautern, Dept Elect & Comp Engn, Electromobil, Kaiserslautern, Germany
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
关键词
FEASIBILITY; PERFORMANCE; MPC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is shown how a performance tuple can be obtained in model predictive control if the optimal control problem is a quadratic program. The quotient of the finite-horizon optimal cost and the tuple's first entry upper bounds the sum of all instances over the finite-horizon optimal cost. The tuple's second entry is a stabilizing prediction horizon. The algorithm taking the describing matrices and giving a performance tuple is easily verifiable.
引用
收藏
页码:463 / 467
页数:5
相关论文
共 9 条