MULTI-SUPERPIXELIZATION-BASED CONVEX FORMULATION FOR JOINT CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA

被引:0
作者
Liu, Yi [1 ]
Bioucas-Dias, Jose [2 ]
Li, Jun [3 ]
Plaza, Antonio [1 ]
机构
[1] Univ Extremadura, Dept Technol Comput & Commun, Caceres, Spain
[2] Univ Lisbon, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Guangdong, Peoples R China
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Hyperspectral; LiDAR; multi-source remote sensing data classification; superpixel; convex framework; vectorial total variation; graph total variation;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The synergistic analysis of light detection and ranging (LiDAR) and hyperspectral data is attracting a significant interest in recent years due to the complementary nature of these two sources of remote sensing data. In this paper, we propose a new spectral-spatial classification method able to jointly exploit these two kinds of data. Our work is based on three innovative components: 1) a superpixel generation method aimed at multivariate image spatial partitioning, 2) a multi-source framework for feature extraction, and 3) a convex framework used to approach the solutions of the resulted image labeling problem associated with vectorial total variation and superpixel-based graph total variation regularizers. Our experimental results, conducted with a hyperspectral data set collected by the Compact Airborne Spectrographic Imager (CASI) spectrometer over the city of Houston in 2013 and a corresponding LiDAR data set, illustrate the effectiveness of the proposed framework.
引用
收藏
页码:807 / 810
页数:4
相关论文
共 16 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2009, International Journal of Image Processing
[3]  
Bioucas-Dias J., 2014, IS T SPIE ELECT IMAG
[4]  
Bioucas-Dias J., 2009, TECH REP
[5]  
Condessa F., 2014, WHISPERS
[6]   Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis [J].
Dalla Mura, Mauro ;
Villa, Alberto ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :542-546
[7]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814
[8]   EXACT MAXIMUM A-POSTERIORI ESTIMATION FOR BINARY IMAGES [J].
GREIG, DM ;
PORTEOUS, BT ;
SEHEULT, AH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (02) :271-279
[9]   Convergent tree-reweighted message passing for energy minimization [J].
Kolmogorov, Vladimir .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (10) :1568-1583
[10]   A Discontinuity Preserving Relaxation Scheme for Spectral-Spatial Hyperspectral Image Classification [J].
Li, Jun ;
Khodadadzadeh, Mahdi ;
Plaza, Antonio ;
Jia, Xiuping ;
Bioucas-Dias, Jose M. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) :625-639