Approximating Lyapunov Exponents and Stationary Measures

被引:6
作者
Baraviera, Alexandre [1 ]
Duarte, Pedro [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Porto Alegre, RS, Brazil
[2] Univ Lisbon, Ctr Matemat Aplicacoes Fundamentals & Invest Oper, Fac Ciencias, P-1749016 Lisbon, Portugal
关键词
Lyapunov exponent; Random cocycle; Stationary measure; 37H15; 37D25;
D O I
10.1007/s10884-018-9724-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new proof of E. Le Page's theorem on the Holder continuity of the first Lyapunov exponent in the class of irreducible Bernoulli cocycles. This suggests an algorithm to approximate the first Lyapunov exponent, as well as the stationary measure, for such random cocycles.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 16 条
[11]  
PERES Y, 1991, LECT NOTES MATH, V1486, P64
[12]   Maximal Lyapunov exponents for random matrix products [J].
Pollicott, Mark .
INVENTIONES MATHEMATICAE, 2010, 181 (01) :209-226
[13]  
Riesz F., 1955, Functional analysis
[14]   ANALYCITY PROPERTIES OF THE CHARACTERISTIC EXPONENTS OF RANDOM MATRIX PRODUCTS [J].
RUELLE, D .
ADVANCES IN MATHEMATICS, 1979, 32 (01) :68-80
[15]   HARMONIC-ANALYSIS ON SL(2,R) AND SMOOTHNESS OF THE DENSITY OF STATES IN THE ONE-DIMENSIONAL ANDERSON MODEL [J].
SIMON, B ;
TAYLOR, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :1-19
[16]  
Sternberg S., 1964, Lectures on differential geometry