Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors

被引:67
作者
Porto, R. Lucio [1 ]
Frappier, R. [1 ]
Ducros, J. B. [1 ]
Aucher, C. [1 ]
Mosqueda, H. [1 ]
Chenu, S. [2 ]
Chavillon, B. [2 ]
Tessier, F. [2 ]
Chevire, F. [2 ]
Brousse, T. [1 ]
机构
[1] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS, F-44322 Nantes 3, France
[2] CNRS, UMR 6226, Sci Chim Rennes Equipe Verres & Ceram, F-35042 Rennes, France
关键词
Electrochemical capacitors; Supercapacitors; Nitrides; Vanadium; Titanium; NANOCRYSTALLINE VN; ELECTRODE MATERIAL; DIOXIDE; SURFACE; PERFORMANCE; REDUCTION; METAL; OXIDE;
D O I
10.1016/j.electacta.2012.05.032
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
TiOxNy and VOxNy powders have been synthesized using oxide precursors and a conventional nitridation method. It enables to control of oxygen content and surface area. The electrochemical performances of the different powders have been investigated. A strong dependence on the surface area as well as on the nature of the oxynitride has been found. A typical value of 300 mu F cm(-2) has been determined for VOxNy powders, while TiOxNy powders only show 50 mu F cm(-2). In this last case it is believed that only double layer capacitance or weak redox reactions participate in charge storage mechanism while for vanadium based oxynitrides, a thin layer below the surface (approximate to 4 angstrom) is involved in charge storage via faradic reactions. VOxNy electrodes can be operated in different aqueous electrolytes, but only double layer capacitance is measured in neutral electrolytes. The highest capacitance values (approximate to 80 F g(-1)) are measured in KOH and fair cycling ability is achieved when the electrochemical window is limited, thus avoiding oxidative potentials. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[3]  
Bélanger D, 2008, ELECTROCHEM SOC INTE, V17, P49
[4]   A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J].
Brousse, T ;
Toupin, M ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A614-A622
[5]   Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior [J].
Cheng, Fukui ;
He, Chun ;
Shu, Dong ;
Chen, Hongyu ;
Zhang, Jie ;
Tang, Shaoqing ;
Finlow, David E. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 131 (1-2) :268-273
[6]   Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2298-A2303
[7]   Synthesis and Characterization of Nanostructured Niobium and Molybdenum Nitrides by a Two-Step Transition Metal Halide Approach [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (08) :2371-2378
[8]   Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors [J].
Choi, Daiwon ;
Blomgren, George E. ;
Kumta, Prashant N. .
ADVANCED MATERIALS, 2006, 18 (09) :1178-+
[9]   Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition [J].
Cross, Andrew ;
Morel, Alban ;
Cormie, Ariana ;
Hollenkamp, Tony ;
Donne, Scott .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7847-7853
[10]   TiN/VN composites with core/shell structure for supercapacitors [J].
Dong, Shanmu ;
Chen, Xiao ;
Gu, Lin ;
Zhou, Xinhong ;
Wang, Haibo ;
Liu, Zhihong ;
Han, Pengxian ;
Yao, Jianhua ;
Wang, Li ;
Cui, Guanglei ;
Chen, Liquan .
MATERIALS RESEARCH BULLETIN, 2011, 46 (06) :835-839