Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models

被引:113
作者
Cascio, D. [1 ]
Magro, R. [1 ]
Fauci, F. [1 ]
Iacomi, M. [1 ,2 ]
Raso, G. [1 ]
机构
[1] Univ Palermo, Dipartimento Fis, I-90133 Palermo, Italy
[2] Inst Stiinte Spatiale, RO-077125 Bucharest, Romania
关键词
Segmentation; Lung nodules; Active contours models; Computer tomography (CT); Mass-spring models; Spline curves; Image features; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES; COMPUTERIZED DETECTION; CANCER; SEGMENTATION; REDUCTION; SCHEME; SCANS;
D O I
10.1016/j.compbiomed.2012.09.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a computer-aided detection (CAD) system which can detect small-sized (from 3 mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate. The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass-Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1098 / 1109
页数:12
相关论文
共 37 条
[1]  
[Anonymous], COMPUT ASSIST RADIOL
[2]  
[Anonymous], P IEEE INT C IM PROC
[3]  
[Anonymous], P MED IM 2004 IM PRO
[4]   Lung image database consortium: Developing a resource for the medical imaging research community [J].
Armato, SG ;
McLennan, G ;
McNitt-Gray, MF ;
Meyer, CR ;
Yankelevitz, D ;
Aberle, DR ;
Henschke, CI ;
Hoffman, EA ;
Kazerooni, EA ;
MacMahon, H ;
Reeves, AP ;
Croft, BY ;
Clarke, LP .
RADIOLOGY, 2004, 232 (03) :739-748
[5]   Automated detection of lung nodules in CT scans: Preliminary results [J].
Armato, SG ;
Giger, ML ;
MacMahon, H .
MEDICAL PHYSICS, 2001, 28 (08) :1552-1561
[6]   A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model [J].
Bellotti, R. ;
De Carlo, F. ;
Gargano, G. ;
Tangaro, S. ;
Cascio, D. ;
Catanzariti, E. ;
Cerello, P. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
Fulcheri, C. ;
Grosso, D. ;
Retico, A. ;
Squarcia, S. ;
Tommasi, E. ;
Golosio, Bruno .
MEDICAL PHYSICS, 2007, 34 (12) :4901-4910
[7]   Computer-aided lung nodule detection in CT: Results of large-scale observer test [J].
Brown, MS ;
Goldin, JG ;
Rogers, S ;
Kim, HJ ;
Suh, RD ;
McNitt-Gray, MF ;
Shah, SK ;
Truong, D ;
Brown, K ;
Sayre, JW ;
Gjertson, DW ;
Batra, P ;
Aberle, DR .
ACADEMIC RADIOLOGY, 2005, 12 (06) :681-686
[8]   Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models: Segmentation of neck lymph nodes [J].
Dornheim, Jana ;
Seim, Heiko ;
Preim, Bernhard ;
Hertel, Ilka ;
Strauss, Giero .
ACADEMIC RADIOLOGY, 2007, 14 (11) :1389-1399
[9]   Automatic segmentation of pulmonary nodules by using dynamic 3D cross-correlation for interactive CAD systems [J].
Fan, L ;
Qian, JZ ;
Odry, B ;
Shen, H ;
Naidich, D ;
Kohl, G ;
Klotz, E .
MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 :1362-1369
[10]  
Fauci F, 2004, IEEE NUCL SCI CONF R, P2695