A nonradical reaction-dominated phenol degradation with peroxydisulfate catalyzed by nitrogen-doped graphene

被引:59
作者
Zheng, Wan [1 ,2 ]
Xiao, Xin [1 ,2 ]
Chen, Baoliang [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Organ Pollutant Proc & Cont, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen-doped graphene; PDS oxidation; Nonradical pathway; Organic pollutant; Catalysis; Degradation; WALLED CARBON NANOTUBES; PERSULFATE ACTIVATION; HETEROGENEOUS CATALYSIS; ORGANIC POLLUTANTS; OXIDE; METAL; ADSORPTION; PEROXYMONOSULFATE; PERFORMANCE; GENERATION;
D O I
10.1016/j.scitotenv.2019.02.173
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrogen doping is a common approach for functionalization of graphene to generate active sites for catalytic reactions. However, the effect of nitrogen content and species within nitrogen-doped graphene (NG) on catalytic phenol oxidation remains largely unaddressed, especially for the peroxidisulfate (PDS) system. In this work, graphene (G), NH3 center dot H2O-reduced graphene (NG-NH3), and N2H4 -reduced graphene (NG-N2H4) with different nitrogen contents were synthesized, and their catalytic abilities in inducing PDS was evaluated. The degradation results indicated that nitrogen doping improved the catalytic ability of G and NG-NH3 shows a higher catalytic ability than NG-N2H4, even though they have similar nitrogen contents. Based on the XPS spectra, among all the doped nitrogen species, the graphitic N made the greatest contribution to the catalytic activity. The scavenger and electron paramagnetic resonance results imply a major contribution of a nonradical mechanism in the NGPDS-phenol reaction system. Finally, the hydroquinone and p-hydroxybenzoic add were identified as two intermediate products during the degradation. The decrease in total organic carbon concentration (TOC) after reaction confirmed that phenol was mineralized partially in CO2. These findings will guide the applications of NG as a catalyst and enrich our understanding of the PDS-phenol reaction system. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 69 条
[1]   Mechanism of Persulfate Activation by Phenols [J].
Ahmad, Mushtaque ;
Teel, Amy L. ;
Watts, Richard J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5864-5871
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Diaz Kirmser EM, 2010, J AGR FOOD CHEM, V58, P12858, DOI DOI 10.1021/JF103054H
[4]   Nonradical reactions in environmental remediation processes: Uncertainty and challenges [J].
Duan, Xiaoguang ;
Sun, Hongqi ;
Shao, Zongping ;
Wang, Shaobin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 224 :973-982
[5]   Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds [J].
Duan, Xiaoguang ;
Su, Chao ;
Zhou, Li ;
Sun, Hongqi ;
Suvorova, Alexandra ;
Odedairo, Taiwo ;
Zhu, Zhonghua ;
Shao, Zongping ;
Wang, Shaobin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 194 :7-15
[6]   Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation [J].
Duan, Xiaoguang ;
Ao, Zhimin ;
Zhou, Li ;
Sun, Hongqi ;
Wang, Guoxiu ;
Wang, Shaobin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 188 :98-105
[7]   Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study [J].
Duan, Xiaoguang ;
Ao, Zhimin ;
Sun, Hongqi ;
Zhou, Li ;
Wang, Guoxiu ;
Wang, Shaobin .
CHEMICAL COMMUNICATIONS, 2015, 51 (83) :15249-15252
[8]   Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons [J].
Duan, Xiaoguang ;
Sun, Hongqi ;
Kang, Jian ;
Wang, Yuxian ;
Indrawirawan, Stacey ;
Wang, Shaobin .
ACS CATALYSIS, 2015, 5 (08) :4629-4636
[9]   Nitrogen-Doped Graphene for Generation and Evolution of Reactive Radicals by Metal-Free Catalysis [J].
Duan, Xiaoguang ;
Ao, Zhimin ;
Sun, Hongqi ;
Indrawirawan, Stacey ;
Wang, Yuxian ;
Kang, Jian ;
Liang, Fengli ;
Zhu, Z. H. ;
Wang, Shaobin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) :4169-4178
[10]   N-Doping-Induced Nonradical Reaction on Single-Walled Carbon Nanotubes for Catalytic Phenol Oxidation [J].
Duan, Xiaoguang ;
Sun, Hongqi ;
Wang, Yuxian ;
Kang, Jian ;
Wang, Shaobin .
ACS CATALYSIS, 2015, 5 (02) :553-559