Exotic Galilean symmetry in the non-commutative plane and the Hall effect

被引:187
|
作者
Duval, C
Horváthy, PA
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 47期
关键词
D O I
10.1088/0305-4470/34/47/314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum mechanics in the non-commutative plane is shown to admit the 'exotic' symmetry of the doubly centrally extended Galilei group. When coupled to a planar magnetic field whose strength is the inverse of the noncommutative parameter, the system becomes singular, and 'Faddeev-Jackiw' reduction yields the 'Chem-Simons' mechanics of Dunne et al. The reduced system moves according to the Hall law.
引用
收藏
页码:10097 / 10107
页数:11
相关论文
共 50 条
  • [1] Exotic Galilean Symmetry and Non-Commutative Mechanics
    Horvathy, Peter A.
    Martina, Luigi
    Stichel, Peter C.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [2] Exotic Galilean symmetry and the hall effect
    Duval, C
    Horváthy, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (14-15): : 1971 - 1977
  • [3] Exotic Galilean symmetry, non-commutativity & the Hall effect
    Horvathy, P. A.
    DIFFERENTIAL GEOMETRY AND PHYSICS, 2006, 10 : 241 - 247
  • [4] Duality symmetry and plane waves in non-commutative electrodynamics
    Abe, Y
    Banerjee, R
    Tsutsui, L
    PHYSICS LETTERS B, 2003, 573 (1-4) : 248 - 254
  • [5] Quantum Hall Effect and non-commutative geometry
    Pasquier, Vincent
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 1 - 17
  • [6] Bosonized supersymmetry of anyons and supersymmetric exotic particle on the non-commutative plane
    Horvathy, Peter A.
    Plyushchay, Mikhail S.
    Valenzuela, Mauricio
    NUCLEAR PHYSICS B, 2007, 768 (03) : 247 - 262
  • [7] Inertial spin Hall effect in non-commutative space
    Basu, B.
    Chowdhury, Debashree
    Ghosh, Subir
    PHYSICS LETTERS A, 2013, 377 (28-30) : 1661 - 1667
  • [8] Supersymmetry in the non-commutative plane
    Lapointe, L
    Ujino, H
    Vinet, L
    ANNALS OF PHYSICS, 2004, 314 (02) : 464 - 475
  • [9] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [10] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    de Melo, G. R.
    de Montigny, M.
    Pompeia, P. J.
    Santos, E. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 441 - 457