On weak Fano varieties with log canonical singularities

被引:9
作者
Gongyo, Yoshinori [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2012年 / 665卷
关键词
THEOREM;
D O I
10.1515/CRELLE.2011.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anti-canonical divisors of weak Fano 3-folds with log canonical singularities are semi-ample. Moreover, we consider semi-ampleness of the anti-log canonical divisor of any weak log Fano pair with log canonical singularities. We show semi-ampleness dose not hold in general by constructing several examples. Based on those examples, we propose sufficient conditions which seem to be the best possible and we prove semi-ampleness under such conditions. In particular we derive semi-ampleness of the anti-canonical divisors of log canonical weak Fano varieties whose lc centers are at most 1-dimensional. We also investigate the Kleiman-Mori cones of weak log Fano pairs with log canonical singularities.
引用
收藏
页码:237 / 252
页数:16
相关论文
共 31 条
[1]  
ABRAMOVICH D, 1992, ASTERISQUE, P139
[2]  
Ambro F., 2003, Proc. Steklov Inst. Math., V240, P214
[3]  
Ambro F., MATHAG0611205
[4]  
AMBRO F, MATHAG9806067
[5]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[6]  
[Anonymous], ARXIV09071506
[7]  
[Anonymous], 2007, Flips for 3-folds and 4-folds
[8]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[9]  
CORTI A, 1992, ASTERISQUE, P171
[10]   Abundance theorem for semi log canonical threefolds [J].
Fujino, O .
DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) :513-532