An α Helix to β Barrel Domain Switch Transforms the Transcription Factor RfaH into a Translation Factor

被引:189
作者
Burmann, Bjoern M. [3 ,4 ]
Knauer, Stefan H. [3 ,4 ]
Sevostyanova, Anastasia [1 ,2 ]
Schweimer, Kristian [3 ,4 ]
Mooney, Rachel A. [5 ]
Landick, Robert [5 ,6 ]
Artsimovitch, Irina [1 ,2 ]
Roesch, Paul [3 ,4 ]
机构
[1] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[2] Ohio State Univ, RNA Grp, Columbus, OH 43210 USA
[3] Univ Bayreuth, Lehrstuhl Biopolymere, D-95447 Bayreuth, Germany
[4] Univ Bayreuth, Forschungszentrum Biomakromol, D-95447 Bayreuth, Germany
[5] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[6] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
关键词
POLYMERASE-II ELONGATION; RNA-POLYMERASE; ESCHERICHIA-COLI; FACTOR NUSG; IN-VITRO; CRYSTAL-STRUCTURE; OPS ELEMENT; PROTEIN; COMPLEX; ANTITERMINATION;
D O I
10.1016/j.cell.2012.05.042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NusG homologs regulate transcription and coupled processes in all living organisms. The Escherichia coli (E. coli) two-domain paralogs NusG and RfaH have conformationally identical N-terminal domains (NTDs) but dramatically different carboxy-terminal domains (CTDs), a beta barrel in NusG and an alpha hairpin in RfaH. Both NTDs interact with elongating RNA polymerase (RNAP) to reduce pausing. In NusG, NTD and CTD are completely independent, and NusG-CTD interacts with termination factor Rho or ribosomal protein S10. In contrast, RfaH-CTD makes extensive contacts with RfaH-NTD to mask an RNAP-binding site therein. Upon RfaH interaction with its DNA target, the operon polarity suppressor (ops) DNA, RfaH-CTD is released, allowing RfaH-NTD to bind to RNAP. Here, we show that the released RfaH-CTD completely refolds from an all-alpha to an all-beta conformation identical to that of NusG-CTD. As a consequence, RfaH-CTD binding to S10 is enabled and translation of RfaH-controlled operons is strongly potentiated.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 48 条
[1]   A minimal sequence code for switching protein structure and function [J].
Alexander, Patrick A. ;
He, Yanan ;
Chen, Yihong ;
Orban, John ;
Bryan, Philip N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (50) :21149-21154
[2]   Evolution of protein fold in the presence of functional constraints [J].
Andreeva, Antonina ;
Murzin, Alexey G. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (03) :399-408
[3]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[4]   Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals [J].
Artsimovitch, I ;
Landick, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7090-7095
[5]   The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand [J].
Artsimovitch, I ;
Landick, R .
CELL, 2002, 109 (02) :193-203
[6]   RfaH and the ops element, components of a novel system controlling bacterial transcription elongation [J].
Bailey, MJA ;
Hughes, C ;
Koronakis, V .
MOLECULAR MICROBIOLOGY, 1997, 26 (05) :845-851
[7]   In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element [J].
Bailey, MJA ;
Hughes, C ;
Koronakis, V .
MOLECULAR AND GENERAL GENETICS, 2000, 262 (06) :1052-1059
[8]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[9]   Structural basis for converting a general transcription factor into an operon-specific virulence regulator [J].
Belogurov, Georgiy A. ;
Vassylyeva, Marina N. ;
Svetlov, Vladimir ;
Klyuyev, Sergiy ;
Grishin, Nick V. ;
Vassylyev, Dmitry G. ;
Artsimovitch, Irina .
MOLECULAR CELL, 2007, 26 (01) :117-129
[10]   Functional regions of the N-terminal domain of the antiterminator RfaH [J].
Belogurov, Georgiy A. ;
Sevostyanova, Anastasia ;
Svetlov, Vladimir ;
Artsimovitch, Irina .
MOLECULAR MICROBIOLOGY, 2010, 76 (02) :286-301