Improved (G′/G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations

被引:26
作者
Akgul, Ali [1 ,2 ]
Kilicman, Adem [3 ,4 ]
Inc, Mustafa [5 ]
机构
[1] Dicle Univ, Fac Educ, Dept Math, TR-21280 Diyarbakir, Turkey
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
[4] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
[5] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; SOLITARY WAVE; ORDER;
D O I
10.1155/2013/414353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional complex transformation is used to transform nonlinear partial differential equations to nonlinear ordinary differential equations. The improved (G'/G)-expansion method is suggested to solve the space and time fractional foam drainage and KdV equations. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Fatigue behavior of aluminum foams [J].
Banhart, J ;
Brinkers, W .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1999, 18 (08) :617-619
[2]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[3]   Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method [J].
Daftardar-Gejji, Varsha ;
Bhalekar, Sachin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :113-120
[4]   Solving a multi-order fractional differential equation using adomian decomposition [J].
Daftardar-Gejji, Varsha ;
Jafari, Hossein .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) :541-548
[5]  
Fereidoon A., 2011, INT J DIFFERENTIAL E, V2011
[6]   Solution of nonlinear fractional differential equations using homotopy analysis method [J].
Ganjiani, Mehdi .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (06) :1634-1641
[7]   Exact solutions for nonlinear partial fractional differential equations [J].
Gepreel, Khaled A. ;
Omran, Saleh .
CHINESE PHYSICS B, 2012, 21 (11)
[8]   Solitary pattern solutions for fractional Zakharov-Kuznetsov equations with fully nonlinear dispersion [J].
Golbabai, A. ;
Sayevand, K. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (04) :757-766
[9]   Analytical treatment of differential equations with fractional coordinate derivatives [J].
Golbabai, A. ;
Sayevand, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1003-1012
[10]   Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain [J].
Golbabai, A. ;
Sayevand, K. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1708-1718