Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model

被引:3
作者
Park, Sung-Been [1 ]
Cha, Min-Chul [1 ]
机构
[1] Hanyang Univ, Dept Appl Phys, Ansan 15588, South Korea
关键词
Matrix product states; Quantum phase transition; Finite-size scaling; RENORMALIZATION-GROUP;
D O I
10.3938/jkps.67.1619
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.
引用
收藏
页码:1619 / 1623
页数:5
相关论文
共 17 条
[1]   Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods [J].
Campostrini, Massimo ;
Hasenbusch, Martin ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW B, 2006, 74 (14)
[2]   Correlation-function approach to the critical properties of the three-dimensional XY model [J].
Cha, Min-Chul ;
Jeon, In-Ho .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (08) :1194-1198
[3]   Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2014, 89 (23)
[4]   Symmetry breaking and criticality in tensor-product states [J].
Liu, Chen ;
Wang, Ling ;
Sandvik, Anders W. ;
Su, Yu-Cheng ;
Kao, Ying-Jer .
PHYSICAL REVIEW B, 2010, 82 (06)
[5]   Quantum transverse-field Ising model on an infinite tree from matrix product states [J].
Nagaj, Daniel ;
Farhi, Edward ;
Goldstone, Jeffrey ;
Shor, Peter ;
Sylvester, Igor .
PHYSICAL REVIEW B, 2008, 77 (21)
[6]  
Perez-Garcia D, 2007, QUANTUM INF COMPUT, V7, P401
[7]   ONE-DIMENSIONAL ISING MODEL WITH A TRANSVERSE FIELD [J].
PFEUTY, P .
ANNALS OF PHYSICS, 1970, 57 (01) :79-+
[8]   Efficient matrix-product state method for periodic boundary conditions [J].
Pippan, Peter ;
White, Steven R. ;
Evertz, Hans Gerd .
PHYSICAL REVIEW B, 2010, 81 (08)
[9]   Matrix product states for critical spin chains: Finite-size versus finite-entanglement scaling [J].
Pirvu, B. ;
Vidal, G. ;
Verstraete, F. ;
Tagliacozzo, L. .
PHYSICAL REVIEW B, 2012, 86 (07)
[10]   Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions [J].
Pirvu, B. ;
Verstraete, F. ;
Vidal, G. .
PHYSICAL REVIEW B, 2011, 83 (12)