Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model

被引:3
作者
Park, Sung-Been [1 ]
Cha, Min-Chul [1 ]
机构
[1] Hanyang Univ, Dept Appl Phys, Ansan 15588, South Korea
关键词
Matrix product states; Quantum phase transition; Finite-size scaling; RENORMALIZATION-GROUP;
D O I
10.3938/jkps.67.1619
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.
引用
收藏
页码:1619 / 1623
页数:5
相关论文
共 17 条
  • [1] Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods
    Campostrini, Massimo
    Hasenbusch, Martin
    Pelissetto, Andrea
    Vicari, Ettore
    [J]. PHYSICAL REVIEW B, 2006, 74 (14):
  • [2] Correlation-function approach to the critical properties of the three-dimensional XY model
    Cha, Min-Chul
    Jeon, In-Ho
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (08) : 1194 - 1198
  • [3] Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz
    Evenbly, G.
    Vidal, G.
    [J]. PHYSICAL REVIEW B, 2014, 89 (23):
  • [4] Symmetry breaking and criticality in tensor-product states
    Liu, Chen
    Wang, Ling
    Sandvik, Anders W.
    Su, Yu-Cheng
    Kao, Ying-Jer
    [J]. PHYSICAL REVIEW B, 2010, 82 (06):
  • [5] Quantum transverse-field Ising model on an infinite tree from matrix product states
    Nagaj, Daniel
    Farhi, Edward
    Goldstone, Jeffrey
    Shor, Peter
    Sylvester, Igor
    [J]. PHYSICAL REVIEW B, 2008, 77 (21):
  • [6] Perez-Garcia D, 2007, QUANTUM INF COMPUT, V7, P401
  • [7] ONE-DIMENSIONAL ISING MODEL WITH A TRANSVERSE FIELD
    PFEUTY, P
    [J]. ANNALS OF PHYSICS, 1970, 57 (01) : 79 - +
  • [8] Efficient matrix-product state method for periodic boundary conditions
    Pippan, Peter
    White, Steven R.
    Evertz, Hans Gerd
    [J]. PHYSICAL REVIEW B, 2010, 81 (08):
  • [9] Matrix product states for critical spin chains: Finite-size versus finite-entanglement scaling
    Pirvu, B.
    Vidal, G.
    Verstraete, F.
    Tagliacozzo, L.
    [J]. PHYSICAL REVIEW B, 2012, 86 (07):
  • [10] Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions
    Pirvu, B.
    Verstraete, F.
    Vidal, G.
    [J]. PHYSICAL REVIEW B, 2011, 83 (12)