Separability of density matrices of graphs for multipartite systems

被引:0
|
作者
Xie, Chen [1 ]
Zhao, Hui [1 ]
Wang, Zhi-Xi [2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 04期
关键词
density matrices of graphs; Laplacian matrices; separability; CRITERION; LAPLACIAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate separability of Laplacian matrices of graphs when seen as density matrices. This is a family of quantum states with many combinatorial properties. We firstly show that the well-known matrix realignment criterion can be used to test separability of this type of quantum states. The criterion can be interpreted as novel graph-theoretic idea. Then, we prove that the density matrix of the tensor product of N graphs is N-separable. However, the converse is not necessarily true. Additionally, we derive a sufficient condition for N-partite entanglement in star graphs and propose a necessary and sufficient condition for separability of nearest point graphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multipartite Separability of Density Matrices of Graphs
    Zhao, Hui
    Zhao, Jing-Yun
    Jing, Naihuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (10) : 3112 - 3126
  • [2] Multipartite Separability of Density Matrices of Graphs
    Hui Zhao
    Jing-Yun Zhao
    Naihuan Jing
    International Journal of Theoretical Physics, 2018, 57 : 3112 - 3126
  • [3] Multipartite separability of Laplacian matrices of graphs
    Wu, Chai Wah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [4] The tripartite separability of density matrices of graphs
    Wang, Zhen
    Wang, Zhixi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [5] Separability criterion for multipartite quantum states based on the Bloch representation of density matrices
    Hassan, Ali Saif M.
    Joag, Pramod S.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 773 - 790
  • [6] SEPARABILITY OF MULTIPARTITE QUANTUM SYSTEMS
    Li, Ming
    Jing, Wang
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (01) : 103 - 111
  • [7] Separability criterion for density matrices
    Peres, A
    PHYSICAL REVIEW LETTERS, 1996, 77 (08) : 1413 - 1415
  • [8] Separability and Fourier representations of density matrices
    Pittenger, AO
    Rubin, MH
    PHYSICAL REVIEW A, 2000, 62 (03): : 9
  • [9] Separability criteria based on the realignment of density matrices and reduced density matrices
    Shen, Shu-Qian
    Wang, Meng-Yuan
    Li, Ming
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [10] Density Conditions For Triangles In Multipartite Graphs
    Adrian Bondy
    Jian Shen
    Stéphan Thomassé
    Carsten Thomassen
    Combinatorica, 2006, 26 : 121 - 131