The Hausdorff dimension of conformal repellers under random perturbation

被引:15
作者
Bogenschütz, T
Ochs, G
机构
[1] Univ Essen Gesamthsch, Fachbereich Math 6, D-45117 Essen, Germany
[2] Univ Bremen, Inst Dynam Syst, D-28334 Bremen, Germany
关键词
D O I
10.1088/0951-7715/12/5/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Hausdorff dimension of a conformal repeller is stable under random perturbations. Our perturbation model uses the notion of a bundle random dynamical system. The main ingredient of our proof is a version df the Bowen-Ruelle formula for expanding almost conformal bundle random dynamical systems.
引用
收藏
页码:1323 / 1338
页数:16
相关论文
共 19 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
Arnold L., 1998, RANDOM DYNAMICAL SYS
[3]   Correlation spectrum of quenched and annealed equilibrium states for random expanding maps [J].
Baladi, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :671-700
[4]  
BALADI V, 1996, RANDOM COMPUT DYN, V4, P85
[5]  
Bogenschutz T., 1996, Random and Computational Dynamics, V4, P85
[6]  
Bogenschutz T., 1992, RANDOM COMPUTATIONAL, V1, P99
[7]  
BOGENSCHUTZ T, 1993, THESIS U BREMEN
[8]  
Bowen R., 1979, PUBLICATIONS MATH IH, V50, P11, DOI [DOI 10.1007/BF02684767, 10.1007/BF02684767]
[9]  
BRIN M, 1983, LECT NOTES MATH, V1007, P30
[10]   Hausdorff dimension of invariant sets for random dynamical systems [J].
Crauel H. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1998, 10 (3) :449-474