It is shown that a vertex transitive complete map M satisfies one of the following: (i) Aut M is regular on the vertex set, (ii) Aut M has a subgroup of index at most 2 which is a Frobenius group with the Frobenius kernel regular on the vertex set. or (iii) Aut M = PSL(2, 2(e)) and M is a non-orientable non-Cayley map. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
Yeh, CH
Parhami, B
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
机构:
Univ Western Australia, Dept Math & Stat, Crawley, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, Crawley, WA 6009, Australia
Giudici, Michael
Li, Cai Heng
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R ChinaUniv Western Australia, Dept Math & Stat, Crawley, WA 6009, Australia
Li, Cai Heng
Xia, Binzhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, Parkville, Vic 8010, AustraliaUniv Western Australia, Dept Math & Stat, Crawley, WA 6009, Australia