It is shown that a vertex transitive complete map M satisfies one of the following: (i) Aut M is regular on the vertex set, (ii) Aut M has a subgroup of index at most 2 which is a Frobenius group with the Frobenius kernel regular on the vertex set. or (iii) Aut M = PSL(2, 2(e)) and M is a non-orientable non-Cayley map. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Yin, Fu-Gang
Feng, Yan-Quan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Feng, Yan-Quan
Xia, Binzhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, AustraliaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China