It is shown that a vertex transitive complete map M satisfies one of the following: (i) Aut M is regular on the vertex set, (ii) Aut M has a subgroup of index at most 2 which is a Frobenius group with the Frobenius kernel regular on the vertex set. or (iii) Aut M = PSL(2, 2(e)) and M is a non-orientable non-Cayley map. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana SI-1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana SI-1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana SI-1000, Slovenia
Potocnik, Primoz
Toledo, Micael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, CP 216,Alebre & Combinatoire,Blvd Triomphe, B-1050 Brussels, BelgiumUniv Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana SI-1000, Slovenia
Toledo, Micael
Verret, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New ZealandUniv Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana SI-1000, Slovenia
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
Univ Primorska, IAM, Muzejski Trg 2, SI-6000 Koper, Slovenia
IMFM, Jadranska 19, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
Potocnik, Primoz
论文数: 引用数:
h-index:
机构:
Spiga, Pablo
Verret, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Univ Primorska, FAMNIT, Glagoljaska 8, SI-6000 Koper, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia