Optimal control of elliptic obstacle problems with mixed boundary conditions

被引:2
作者
Peng, Zijia [1 ]
Huang, Sheng
Chai, Dailing
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Nanning, Guangxi, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Variational inequality; optimal control; optimality conditions; boundary optimal control; obstacle problems; DISTRIBUTED CONTROL;
D O I
10.1080/02331934.2022.2157679
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study optimal control of an elliptic obstacle problem with mixed boundary conditions whose weak formulation is a nonlinear variational inequality. We put the control on both the boundary and obstacles. Existence of optimal solutions is proved and the necessary conditions of optimality are derived by the Lagrange multiplier rule and approximation techniques.
引用
收藏
页码:1397 / 1416
页数:20
相关论文
共 37 条
[11]   DISTRIBUTED CONTROL OF SYSTEMS GOVERNED BY A GENERAL-CLASS OF QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
CASAS, E ;
FERNANDEZ, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :20-47
[12]   Optimal control of obstacle for quasi-linear elliptic variational bilateral problems [J].
Chen, QH ;
Chu, DL ;
Tan, RCE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (03) :1067-1080
[13]   Double obstacle control problem for a quasilinear elliptic variational inequality with source term [J].
Chen, Qihong ;
Chu, Delin ;
Tan, Roger C. E. ;
Ye, Yuquan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 18 :108-120
[14]  
Duvaut G., 1976, INEQUALITIES MECH PH, DOI 10.1007/978-3-642-66165-5
[15]   Optimal control of unilateral obstacle problem with a source term [J].
Ghanem, Radouen .
POSITIVITY, 2009, 13 (02) :321-338
[16]   Newton's method for class of weakly singular optimal control problems [J].
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :896-916
[17]   Optimal control of obstacle problems by H1-obstacles [J].
Ito, Kazufumi ;
Kunisch, Karl .
APPLIED MATHEMATICS AND OPTIMIZATION, 2007, 56 (01) :1-17
[18]  
Ito K, 2008, ADV DES CONTROL, P1
[19]   Inverse problems for quasi-variational inequalities [J].
Khan, Akhtar A. ;
Motreanu, Dumitru .
JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (02) :401-411
[20]  
Lions J. L., 1971, Optimal Control of Systems Governed by Partial Differential Equations, V170, DOI DOI 10.1007/978-3-642-65024-6