Optimal control of elliptic obstacle problems with mixed boundary conditions

被引:2
作者
Peng, Zijia [1 ]
Huang, Sheng
Chai, Dailing
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Nanning, Guangxi, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Variational inequality; optimal control; optimality conditions; boundary optimal control; obstacle problems; DISTRIBUTED CONTROL;
D O I
10.1080/02331934.2022.2157679
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study optimal control of an elliptic obstacle problem with mixed boundary conditions whose weak formulation is a nonlinear variational inequality. We put the control on both the boundary and obstacles. Existence of optimal solutions is proved and the necessary conditions of optimality are derived by the Lagrange multiplier rule and approximation techniques.
引用
收藏
页码:1397 / 1416
页数:20
相关论文
共 37 条
[1]   An obstacle control problem with a source term [J].
Adams, DR ;
Lenhart, S .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (01) :79-95
[2]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[3]  
Ambrosetti A., 1995, CAMBRIDGE STUD ADV M
[4]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities
[6]   BOUNDARY CONTROL-PROBLEMS WITH NON-LINEAR STATE EQUATION [J].
BARBU, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (01) :125-143
[7]  
Barbu V., 1993, Math. Sci. Engrg.
[8]   Optimal control of the obstacle in semilinear variational inequalities [J].
Bergounioux, M ;
Lenhart, S .
POSITIVITY, 2004, 8 (03) :229-242
[9]   Optimal control of bilateral obstacle problems [J].
Bergounioux, M ;
Lenhart, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) :240-255
[10]  
Carl S, 2007, SPRINGER MONOGR MATH, P1