Fish Shoals Behavior Detection Based on Convolutional Neural Network and Spatiotemporal Information

被引:34
作者
Han, Fangfang [1 ]
Zhu, Junchao [1 ]
Liu, Bin [1 ]
Zhang, Baofeng [1 ]
Xie, Fuhua [1 ]
机构
[1] Tianjin Univ Technol, Sch Elect & Elect Engn, Tianjin Key Lab Control Theory & Applicat Complic, Tianjin 300384, Peoples R China
关键词
Intelligent agriculture; fish behavior; deep learning; convolutional neural network; spatiotemporal information fusion;
D O I
10.1109/ACCESS.2020.3008698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Behavior is the first visible change in an animal species after exposure to its own or environmental stressors and is a sensitive indicator. Fish are social animals, and the abnormality of group behavior is more indicative about a particular event than individual behavior, providing more effective informeqation about environmental or group social changes. The group behavior is not only reflected in the spatial distribution, but also reflected in the temporal behavior of the group and individual movement changes under the influence of pressure factors. This paper proposes a group behavior discrimination method based on convolutional neural network and spatiotemporal information fusion, which intends to make use of the prominent performance of convolutional neural network in image recognition and state classification, and imitating the attentional mechanism of ventral channel and dorsal channel when the human brain processes visual signals. Some pressure environments are made in laboratory, the behavior states of fish shoals are recorded, and the sample database of shoals' behavior state is established by combining the spatial information of shoals' spatial distribution with the time information reflected in the movement behavior. A simple convolutional neural network is constructed to quickly identify the behavior state of fish shoals. The effects of bath size and training epoch on network training speed and recognition accuracy are discussed, and the visualization of the intermediate data of the convolutional neural network is studied. Shown from the results of experiments of this paper, different behavior states of fish shoals can be recognized and classified effectively by using the simple convolutional neural network and spatiotemporal fusion images. What's more, from the visualization of network intermediate data, it is found that the convolutional neural network has a higher discrimination power to the image edge feature than the image gray-value feature.
引用
收藏
页码:126907 / 126926
页数:20
相关论文
共 50 条
  • [1] Spatiotemporal Feature Based Convolutional Neural Network for Violence Detection
    Ben Mabrouk, Amira
    Zagrouba, Ezzeddine
    THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [2] FaceMD: convolutional neural network-based spatiotemporal fusion facial manipulation detection
    Aloraini, Mohammed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 247 - 255
  • [3] Convolutional neural network-based spatiotemporal prediction for deformation behavior of arch dams
    Pan, Jianwen
    Liu, Wenju
    Liu, Changwei
    Wang, Jinting
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [4] FaceMD: convolutional neural network-based spatiotemporal fusion facial manipulation detection
    Mohammed Aloraini
    Signal, Image and Video Processing, 2023, 17 : 247 - 255
  • [5] Image Resampling Detection Based on Convolutional Neural Network
    Liang, Yaohua
    Fang, Yanmei
    Luo, Shangjun
    Chen, Bing
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 257 - 261
  • [6] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422
  • [7] Summary of Object Detection Based on Convolutional Neural Network
    Wang Xuejiao
    Zhi Min
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [8] Brain Tumor Detection Based on Multimodal Information Fusion and Convolutional Neural Network
    Li, Ming
    Kuang, Lishan
    Xu, Shuhua
    Sha, Zhanguo
    IEEE ACCESS, 2019, 7 : 180134 - 180146
  • [9] A Robust Abnormal Behavior Detection Method Using Convolutional Neural Network
    Tay, Nian Chi
    Connie, Tee
    Ong, Thian Song
    Goh, Kah Ong Michael
    Teh, Pin Shen
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, 2019, 481 : 37 - 47
  • [10] Vision based Real-time Fish Detection Using Convolutional Neural Network
    Sung, Minsung
    Yu, Son-Cheol
    Girdhar, Yogesh
    OCEANS 2017 - ABERDEEN, 2017,