A note on the Ostrovsky equation in weighted Sobolev spaces

被引:5
作者
Bustamante, Eddye [1 ]
Jimenez Urrea, Jose [1 ]
Mejia, Jorge [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Medellin 3840, Colombia
关键词
Ostrovsky equation; Local well-posedness; Weighted Sobolev spaces; BENJAMIN-ONO-EQUATION; CAUCHY-PROBLEM; WELL-POSEDNESS; KDV EQUATION; REGULARITY;
D O I
10.1016/j.jmaa.2017.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the initial value problem (IVP) associated to the Ostrovsky equations u(t) + partial derivative(3)(x)u +/- partial derivative(-1)(x)u + u partial derivative(x)u = 0, x is an element of R, t is an element of R,} u(x,0) = u(0)(x). We study the well-posedness of the IVP in the weighted Sobolev spaces Z(s,s/2) := {f is an element of H-s (R) : partial derivative(-1)(x) f is an element of L-2(R)}boolean AND L-2(vertical bar x vertical bar(s)dx), with 3/4 < s <= 1. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1004 / 1018
页数:15
相关论文
共 50 条
  • [21] WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR THE REGULARIZED BENJAMIN-ONO EQUATION IN WEIGHTED SOBOLEV SPACES
    Fonseca, G.
    Rodriguez-Blanco, G.
    Sandoval, W.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (04) : 1327 - 1341
  • [22] The action of √-Δ on weighted Sobolev spaces
    Umeda, T
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) : 301 - 313
  • [23] The Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger equation in Sobolev spaces
    Mun, HakBom
    An, JinMyong
    Kim, JinMyong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (03) : 278 - 293
  • [24] Sobolev spaces and del-differential operators on manifolds I: basic properties and weighted spaces
    Kohr, Mirela
    Nistor, Victor
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (04) : 721 - 758
  • [25] GEOMETRIC SINGULARITIES OF THE POISSON'S EQUATION IN A NON-SMOOTH DOMAIN WITH APPLICATIONS OF WEIGHTED SOBOLEV SPACES
    Anjam, Yasir Nadeem
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (04): : 672 - 688
  • [26] Interpolation Theorems for Weighted Sobolev Spaces
    Kussainova, Leili
    Ospanova, Ademi
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 25 - +
  • [27] A new approach to weighted Sobolev spaces
    Kebiche, Djameleddine
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 893 - 920
  • [28] Certain imbeddings of weighted Sobolev spaces
    Jain, P
    Bansal, B
    Jain, PK
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 105 - 120
  • [29] Poincaré inequalities in weighted Sobolev spaces
    Wan-yi Wang
    Jiong Sun
    Zhi-ming Zheng
    Applied Mathematics and Mechanics, 2006, 27 : 125 - 132
  • [30] SOME IDENTITIES ON WEIGHTED SOBOLEV SPACES
    Boulmezaoud, Tahar Z.
    Kourta, Amel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 427 - 434