Using microarrays to study the microenvironment in tumor biology: The crucial role of statistics

被引:5
作者
Baker, Stuart G. [1 ]
Kramer, Barnett S. [2 ]
机构
[1] NCI, Canc Prevent Div, Bethesda, MD 20892 USA
[2] NIH, Off Dis Prevent, Bethesda, MD 20892 USA
关键词
bonferroni; class prediction; cluster analysis; differential expression; false discovery rate; sample size;
D O I
10.1016/j.semcancer.2008.03.001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Microarrays represent a potentially powerful tool for better understanding the role of the microenvironment on tumor biology. To make the best use of microarray data and avoid incorrect or unsubstantiated conclusions, care must be taken in the statistical analysis. To illustrate the statistical issues involved we discuss three microarray studies related to the microenvironment and tumor biology involving: (i) prostatic stroma cells in cancer and non-cancer tissues; (ii) breast stroma and epithelial cells in breast cancer patients and non-cancer patients: and (iii) serum associated with wound response and stroma in cancer patients. Using these examples we critically discuss three types of analyses: differential gene expression, cluster analysis, and class prediction. We also discuss design issues. Published by Elsevier Ltd.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 24 条
[1]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[2]   Paradoxes in carcinogenesis: New opportunities for research directions [J].
Baker, Stuart G. ;
Kramer, Barnett S. .
BMC CANCER, 2007, 7 (1)
[3]   Identifying genes that contribute most to good classification in microarrays [J].
Baker, Stuart G. ;
Kramer, Barnett S. .
BMC BIOINFORMATICS, 2006, 7 (1)
[4]   Markers for early detection of cancer: Statistical guidelines for nestedcase-control studies [J].
Baker S.G. ;
Kramer B.S. ;
Srivastava S. .
BMC Medical Research Methodology, 2 (1) :1-8
[5]  
Bretz F, 2005, METHOD INFORM MED, V44, P431
[6]   Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds [J].
Chang, HY ;
Sneddon, JB ;
Alizadeh, AA ;
Sood, R ;
West, RB ;
Montgomery, K ;
Chi, JT ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
PLOS BIOLOGY, 2004, 2 (02) :206-214
[7]   Classification of microarrays to nearest centroids [J].
Dabney, AR .
BIOINFORMATICS, 2005, 21 (22) :4148-4154
[8]   Sample size planning for developing classifiers using high-dimensional DNA microarray data [J].
Dobbin, Kevin K. ;
Simon, Richard M. .
BIOSTATISTICS, 2007, 8 (01) :101-117
[9]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[10]   Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting [J].
Dupuy, Alain ;
Simon, Richard M. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (02) :147-157