Evaluation of optimal droplet size for control of Palmer amaranth (Amaranthus palmeri) with acifluorfen

被引:1
|
作者
Franca, Lucas X. [1 ]
Dodds, Darrin M. [1 ]
Butts, Thomas R. [2 ]
Kruger, Greg R. [2 ]
Reynolds, Daniel B. [1 ]
Mills, J. Anthony [3 ]
Bond, Jason A. [4 ]
Catchot, Angus L. [5 ]
Peterson, Daniel G. [1 ,6 ]
机构
[1] Mississippi State Univ, Dept Plant & Soil Sci, 32 Creelman St,Off 114,Dorman Hall, Mississippi State, MS 39762 USA
[2] Univ Nebraska Lincoln, Dept Agron & Hort, North Platte, NE USA
[3] Bayer CropSci, Collierville, TN USA
[4] Mississippi State Univ, Delta Res & Extens Ctr, Stoneville, MS USA
[5] Mississippi State Univ, Dept Biochem Mol Biol Entomol & Plant Pathol, Mississippi State, MS 39762 USA
[6] Mississippi State Univ, Inst Genom Biocomp & Biotechnol, Mississippi State, MS 39762 USA
关键词
Protoporphyrinogen (PPO)-inhibiting herbicide; pulse width modulation (PWM); prediction modeling; weed control; CARRIER VOLUME; HERBICIDE EFFICACY; SPRAY VOLUME; DRIFT; PERFORMANCE; TECHNOLOGY; DEPOSITION; RETENTION; IMPACTION; PRESSURE;
D O I
10.1017/wet.2020.11
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Acifluorfen is a nonsystemic PPO-inhibiting herbicide commonly used for POST Palmer amaranth control in soybean, peanut, and rice across the southern United States. Concerns have been raised regarding herbicide selection pressure and particle drift, increasing the need for application practices that optimize herbicide efficacy while mitigating spray drift. Field research was conducted in 2016, 2017, and 2018 in Mississippi and Nebraska to evaluate the influence of a range of spray droplet sizes [150 mu m (Fine) to 900 mu m (Ultra Coarse)], using acifluorfen to create a novel Palmer amaranth management recommendation using pulse width modulation (PWM) technology. A pooled site-year generalized additive model (GAM) analysis suggested that 150-mu m (Fine) droplets should be used to obtain the greatest Palmer amaranth control and dry biomass reduction. Nevertheless, GAM models indicated that only 7.2% of the variability observed in Palmer amaranth control was due to differences in spray droplet size. Therefore, location-specific GAM analyses were performed to account for geographical differences to increase the accuracy of prediction models. GAM models suggested that 250-mu m (Medium) droplets optimize acifluorfen efficacy on Palmer amaranth in Dundee, MS, and 310-mu m (Medium) droplets could sustain 90% of maximum weed control. Specific models for Beaver City, NE, indicated that 150-mu m (Fine) droplets provide maximum Palmer amaranth control, and 340-mu m (Medium) droplets could maintain 90% of greatest weed control. For Robinsonville, MS, optimal Palmer amaranth control could be obtained with 370-mu m (Coarse) droplets, and 90% maximum control could be sustained with 680 mu m (Ultra Coarse) droplets. Differences in optimal droplet size across location could be a result of convoluted interactions between droplet size, weather conditions, population density, plant morphology, and soil fertility levels. Future research should adopt a holistic approach to identify and investigate the influence of environmental and application parameters to optimize droplet size recommendations.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 50 条
  • [1] Droplet size impact on lactofen and acifluorfen efficacy for Palmer amaranthus (Amaranthus palmeri) control
    Franca, Lucas X.
    Dodds, Darrin M.
    Butts, Thomas R.
    Kruger, Greg R.
    Reynolds, Daniel B.
    Mills, J. Anthony
    Bond, Jason A.
    Catchot, Angus L.
    Peterson, Daniel G.
    WEED TECHNOLOGY, 2020, 34 (03) : 416 - 423
  • [2] Palmer Amaranth (Amaranthus palmeri): A Review
    Ward, Sarah M.
    Webster, Theodore M.
    Steckel, Larry E.
    WEED TECHNOLOGY, 2013, 27 (01) : 12 - 27
  • [3] Fomesafen Programs for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato
    Barkley, Susan L.
    Chaudhari, Sushila
    Jennings, Katherine M.
    Schultheis, Jonathan R.
    Meyers, Stephen L.
    Monks, David W.
    WEED TECHNOLOGY, 2016, 30 (02) : 506 - 515
  • [4] Interference of Palmer Amaranth (Amaranthus palmeri) in Sweetpotato
    Meyers, Stephen L.
    Jennings, Katherine M.
    Schultheis, Jonathan R.
    Monks, David W.
    WEED SCIENCE, 2010, 58 (03) : 199 - 203
  • [5] Acclimation of Palmer amaranth (Amaranthus palmeri) to shading
    Jha, Prashant
    Norsworthy, Jason K.
    Riley, Melissa B.
    Bielenberg, Douglas G.
    Bridges, William, Jr.
    WEED SCIENCE, 2008, 56 (05) : 729 - 734
  • [6] Evaluation of Wick-Applied Glyphosate for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato
    Meyers, Stephen L.
    Jennings, Katherine M.
    Schultheis, Jonathan R.
    Monks, David W.
    WEED TECHNOLOGY, 2016, 30 (03) : 765 - 772
  • [7] Critical Period for Palmer Amaranth (Amaranthus palmeri) Control in Pickling Cucumber
    McGowen, Samuel J.
    Jennings, Katherine M.
    Chaudhari, Sushila
    Monks, David W.
    Schultheis, Jonathan R.
    Reberg-Horton, Chris
    WEED TECHNOLOGY, 2018, 32 (05) : 586 - 591
  • [8] Control of Volunteer Horseradish and Palmer Amaranth (Amaranthus palmeri) with Dicamba and Glyphosate
    Jenkins, Matthew E.
    Krausz, Ronald F.
    Matthews, Joseph L.
    Gage, Karla L.
    Walters, S. Alan
    WEED TECHNOLOGY, 2017, 31 (06) : 852 - 862
  • [9] Pollen Grain Size, Density, and Settling Velocity for Palmer Amaranth (Amaranthus palmeri)
    Sosnoskie, L. M.
    Webster, T. M.
    Dales, D.
    Rains, G. C.
    Grey, T. L.
    Culpepper, A. S.
    WEED SCIENCE, 2009, 57 (04) : 404 - 409
  • [10] Characterization of MCPA resistance in Palmer amaranth (Amaranthus palmeri)
    Singh, Rishabh
    Tardif, Francois J.
    Jugulam, Mithila
    WEED SCIENCE, 2023, 71 (06) : 565 - 573