Methods for data-driven multiscale model discovery for materials

被引:46
作者
Brunton, Steven L. [1 ]
Kutz, J. Nathan [2 ]
机构
[1] Univ Washington, Mech Engn, Seattle, WA 98195 USA
[2] Univ Washington, Appl Math, Seattle, WA 98195 USA
来源
JOURNAL OF PHYSICS-MATERIALS | 2019年 / 2卷 / 04期
关键词
model discovery; machine learning; sparse regression; metamaterials; SPARSE IDENTIFICATION; VARIATIONAL APPROACH; SPECTRAL PROPERTIES; DECOMPOSITION; DESIGN; ALGORITHMS; SYSTEMS; VALIDATION; PROJECTION; REDUCTION;
D O I
10.1088/2515-7639/ab291e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite recent achievements in the design and manufacture of advanced materials, the contributions from first-principles modeling and simulation have remained limited, especially in regards to characterizing how macroscopic properties depend on the heterogeneous microstructure. An improved ability to model and understand these multiscale and anisotropic effects will be critical in designing future materials, especially given rapid improvements in the enabling technologies of additive manufacturing and active metamaterials. In this review, we discuss recent progress in the data-driven modeling of dynamical systems using machine learning and sparse optimization to generate parsimonious macroscopic models that are generalizable and interpretable. Such improvements in model discovery will facilitate the design and characterization of advanced materials by improving efforts in (1) molecular dynamics, (2) obtaining macroscopic constitutive equations, and (3) optimization and control of metamaterials.
引用
收藏
页数:15
相关论文
共 107 条
[41]   Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions [J].
Halko, N. ;
Martinsson, P. G. ;
Tropp, J. A. .
SIAM REVIEW, 2011, 53 (02) :217-288
[42]   De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets [J].
Hemati, Maziar S. ;
Rowley, Clarence W. ;
Deem, Eric A. ;
Cattafesta, Louis N. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (04) :349-368
[43]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97
[44]   Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna [J].
Johnson, Mikala C. ;
Brunton, Steven L. ;
Kundtz, Nathan B. ;
Kutz, Nathan J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (01) :59-68
[45]   Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna [J].
Johnson, Mikala C. ;
Brunton, Steven L. ;
Kundtz, Nathan B. ;
Kutz, J. Nathan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (04) :1881-1886
[46]   Machine learning: Trends, perspectives, and prospects [J].
Jordan, M. I. ;
Mitchell, T. M. .
SCIENCE, 2015, 349 (6245) :255-260
[47]   AN EIGENSYSTEM REALIZATION-ALGORITHM FOR MODAL PARAMETER-IDENTIFICATION AND MODEL-REDUCTION [J].
JUANG, JN ;
PAPPA, RS .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1985, 8 (05) :620-627
[48]   Sparse identification of nonlinear dynamics for model predictive control in the low-data limit [J].
Kaiser, E. ;
Kutz, J. N. ;
Brunton, S. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2219)
[49]  
Kaiser E, 2017, ARXIV170701146
[50]  
Klus S., 2016, J COMPUT DYN, V3, P51