Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning

被引:125
作者
Gao, Qishuo [1 ]
Lim, Samsung [1 ]
Jia, Xiuping [2 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2612, Australia
关键词
convolutional neural networks (CNNs); hyperspectral imagery (HSI); classification; multiple feature learning; SPATIAL CLASSIFICATION; ATTRIBUTE PROFILES; FRAMEWORK;
D O I
10.3390/rs10020299
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Convolutional neural networks (CNNs) have been extended to hyperspectral imagery (HSI) classification due to its better feature representation and high performance, whereas multiple feature learning has shown its effectiveness in computer vision areas. This paper proposes a novel framework that takes advantage of both CNNs and multiple feature learning to better predict the class labels for HSI pixels. We built a novel CNN architecture with various features extracted from the raw imagery as input. The network generates the corresponding relevant feature maps for the input, and the generated feature maps are fed into a concatenating layer to form a joint feature map. The obtained joint feature map is then input to the subsequent layers to predict the final labels for each hyperspectral pixel. The proposed method not only takes advantage of enhanced feature extraction from CNNs, but also fully exploits the spectral and spatial information jointly. The effectiveness of the proposed method is tested with three benchmark data sets, and the results show that the CNN-based multi-feature learning framework improves the classification accuracy significantly.
引用
收藏
页数:18
相关论文
共 31 条
[1]   Deep Learning With Attribute Profiles for Hyperspectral Image Classification [J].
Aptoula, Erchan ;
Ozdemir, Murat Can ;
Yanikoglu, Berrin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) :1970-1974
[2]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[3]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[4]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[5]   Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis [J].
Dalla Mura, Mauro ;
Villa, Alberto ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :542-546
[6]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[7]   Multi-task Pose-Invariant Face Recognition [J].
Ding, Changxing ;
Xu, Chang ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (03) :980-993
[8]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814
[9]   Investigation of the random forest framework for classification of hyperspectral data [J].
Ham, J ;
Chen, YC ;
Crawford, MM ;
Ghosh, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :492-501
[10]  
Karpathy A., 2014, P IEEE INT C COMP VI