Parallel Neville elimination:: A simple cost-optimal algorithm

被引:0
作者
Alonso, P [1 ]
Cortina, R [1 ]
Díaz, I [1 ]
Ranilla, J [1 ]
Hernández, V [1 ]
机构
[1] Univ Oviedo, Dept Matemat, E-33271 Gijon, Spain
来源
INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS | 2001年
关键词
D O I
10.1109/ICPPW.2001.951934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper a parallel algorithm to solve linear equation systems is presented. This method, known as Neville elimination, is appropriate especially for the case of a totally positive matrix (all its minors are nonnegative). We prove that this algorithm is cost-optimal for a given parallel implementation of Neville elimination, in which the coefficient matrix is rowwise stripe-partitioned among the processors. In case of Gaussian elimination it is necessary a pipelined version to obtain the optimal cost. Furthermore, experimental results obtained on an IBM SP2 multicomputer using MPI corroborate the theoretic estimation about the algorithm efficiency.
引用
收藏
页码:182 / 186
页数:3
相关论文
共 15 条
[1]  
Alonso P, 1999, LECT NOTES COMPUT SC, V1685, P1073
[2]   Backward error analysis of Neville elimination [J].
Alonso, P ;
Gasca, M ;
Pena, JM .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (02) :193-204
[3]  
ALONSO P, 1998, REV REAL ACAD CIENCI, V92, P1
[4]  
ALONSO P, IN PRESS LINEAR ALGE
[5]  
DONGARRA JJ, 1998, SOFTW ENVIRONM TOOL, P1
[6]   PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA COMPUTATIONS [J].
GALLIVAN, KA ;
PLEMMONS, RJ ;
SAMEH, AH .
SIAM REVIEW, 1990, 32 (01) :54-135
[7]  
Gasca M, 1996, MATH APPL, V359, P109
[8]   GENERALIZED SCHUR-COMPLEMENTS AND A TEST FOR TOTAL POSITIVITY [J].
GASCA, M ;
MUHLBACH, G .
APPLIED NUMERICAL MATHEMATICS, 1987, 3 (03) :215-232
[9]  
GASCA M, 1995, NATO ADV SCI INST SE, V454, P131
[10]   TOTAL POSITIVITY AND NEVILLE ELIMINATION [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 165 :25-44