Using Temporal and Topological Features for Intrusion Detection in Operational Networks

被引:5
作者
Anton, Simon D. Duque [1 ]
Fraunholz, Daniel [1 ]
Schotten, Hans Dieter [1 ]
机构
[1] German Res Ctr AI, Kaiserslautern, Germany
来源
14TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2019) | 2019年
关键词
Machine Learning; Graph; IT-Security; Industrial Process; Time Series; SYSTEM;
D O I
10.1145/3339252.3341476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Until two decades ago, industrial networks were deemed secure due to physical separation from public networks. An abundance of successful attacks proved that assumption wrong. Intrusion detection solutions for industrial application need to meet certain requirements that differ from home- and office-environments, such as working without feedback to the process and compatibility with legacy systems. Industrial systems are commonly used for several decades, updates are often difficult and expensive. Furthermore, most industrial protocols do not have inherent authentication or encryption mechanisms, allowing for easy lateral movement of an intruder once the perimeter is breached. In this work, an algorithm for motif discovery in time series, Matrix Profiles, is used to detect outliers in the timing behaviour of an industrial process. This process was monitored in an experimental environment, containing ground truth labels after attacks were performed. Furthermore, the graph representations of a different industrial data set that has been emulated are used to detect malicious activities. These activities can be derived from anomalous communication patterns, represented as edges in the graph. Finally, an integration concept for both methods is proposed.
引用
收藏
页数:9
相关论文
共 51 条
  • [1] Graph based anomaly detection and description: a survey
    Akoglu, Leman
    Tong, Hanghang
    Koutra, Danai
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (03) : 626 - 688
  • [2] [Anonymous], 22 INT C DAT ENG WOR
  • [3] [Anonymous], 2016, ITRUST DAT
  • [4] [Anonymous], 2009, 2009 IEEE C EMERGING, DOI [DOI 10.1109/ETFA.2009.5347134, 10.1109/ETFA.2009.5347134]
  • [5] [Anonymous], 2015, P 1 ACM WORKSH CYB P, DOI 10.1145/2732198.2732200
  • [6] [Anonymous], 2017, P 9 CENTR EUR WORKSH
  • [7] [Anonymous], 2016, P 11 INT C CRIT INF
  • [8] [Anonymous], 2010, P ARM SCI C
  • [9] [Anonymous], INT C SOFTW TEL COMP
  • [10] Anton S., 2018, P 13 INT C AV REL SE, P1