Physicochemical properties of lithium iron phosphate-carbon as lithium polymer battery cathodes

被引:22
作者
Jin, Bo [1 ,2 ]
Sun, Guangping [1 ,2 ]
Liang, Jicai [1 ,2 ]
Gu, Hal-Bon [3 ]
机构
[1] Jilin Univ, Minist Educ, Key Lab Automobile Mat, Changchun 130025, Peoples R China
[2] Jilin Univ, Coll Mat Sci & Engn, Changchun 130025, Peoples R China
[3] Chonnam Natl Univ, Dept Elect Engn, Kwangju 500757, South Korea
基金
中国博士后科学基金;
关键词
Lithium iron phosphate-carbon; solid polymer electrolyte; lithium polymer battery; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; LIFEPO4/C COMPOSITE; PERFORMANCE; STATE; REACTIVITY; TRANSPORT; OLIVINES; ROUTE; CELLS;
D O I
10.1002/er.1927
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium iron phosphate-carbon (LiFePO4/multiwalled carbon nanotubes (MWCNTs)) composite cathode materials were prepared by a hydrothermal method. In this study, we used MWCNTs as conductive additive. Poly (vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolyte (SPE) was applied. The structural and morphological performance of LiFePO4/MWCNTs cathode materials was investigated by X-ray diffraction and scanning electron microscopy/mapping. The electrochemical properties of Li/SPE/LiFePO4-MWCNTs coin-type polymer batteries were analyzed by cyclic voltammetry, ac impedance and galvanostatic charge/discharge tests. Li/SPE/LiFePO4-MWCNTs polymer battery with 5 wt % MWCNTs demonstrates the highest discharge capacity and stable cyclability at room temperature. It is indicated that LiFePO4-MWCNTs can be used as the cathode materials for lithium polymer batteries. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:500 / 509
页数:10
相关论文
共 37 条
[1]   Performance of high-power lithium-ion cells under pulse discharge and charge conditions [J].
Abraham, D. P. ;
Dees, D. W. ;
Christophersen, J. ;
Ho, C. ;
Jansen, A. N. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (02) :190-203
[2]   Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes II.: All solid-state Li/LiFePO4 polymer batteries [J].
Appetecchi, GB ;
Hassoun, J ;
Scrosati, B ;
Croce, F ;
Cassel, F ;
Salomon, M .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :246-253
[3]   Phase transitions occurring upon lithium insertion-extraction of LiCoPO4 [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Baehtz, Carsten ;
Bramnik, Kirill G. ;
Ehrenberg, Helmut .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :908-915
[4]   Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery [J].
Cai, Rui ;
Yuan, Tao ;
Ran, Ran ;
Liu, Xiaoqin ;
Shao, Zongping .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (01) :68-77
[5]   Hydrothermal synthesis of lithium iron phosphate [J].
Chen, Jiajun ;
Whittingham, M. Stanley .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) :855-858
[6]   Synthesis of olivine-type LiFePO4 by emulsion-drying method [J].
Cho, TH ;
Chung, HT .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :272-276
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[9]   Electrochemical properties of LiFePO4 prepared via hydrothermal route [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Sharaishi, Keisuke ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :656-659
[10]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810