On an independence test approach to the goodness-of-fit problem

被引:7
作者
Baringhaus, Ludwig [1 ]
Gaigall, Daniel [1 ]
机构
[1] Leibniz Univ Hannover, Inst Math Stochast, D-30060 Hannover, Germany
关键词
Goodness-of-fit test; Independence test; Parametric bootstrap; Vapnik-Chervonenkis class; U-process; Gamma distribution; Inverse Gaussian distribution; INVERSE GAUSSIAN DISTRIBUTION; GAMMA-DISTRIBUTION; LIMIT-THEOREMS;
D O I
10.1016/j.jmva.2015.05.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1,..., X-n be independent and identically distributed random variables with distribution IF. Assuming that there are measurable functions f : R-2 -> R and g : R-2 -> R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f (X-1, X-2), g (X-1, X-2) are independent, if and only if F is an element of F, we propose to treat the testing problem H : F is an element of F, K : F is not an element of F by applying a consistent nonparametric independence test to the bivariate sample variables (f (X-i, X-j), g(X-i, X-j)), 1 <= i, j <= n, i not equal j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov-Smirnov and Cramer-von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 208
页数:16
相关论文
共 35 条
[1]  
Ang AHS, 1975, Basic Principles, V1
[2]  
[Anonymous], 1993, Metrika
[3]  
[Anonymous], 2001, Sankhya, B
[4]  
[Anonymous], 1978, Lecture Notes in Mathematics
[5]  
[Anonymous], 1986, Statistics: Textbooks and Monographs, Vol. 68
[6]   LIMIT-THEOREMS FOR U-PROCESSES [J].
ARCONES, MA ;
GINE, E .
ANNALS OF PROBABILITY, 1993, 21 (03) :1494-1542
[7]   A multivariate nonparametric test of independence [J].
Bakirov, Nail K. ;
Rizzo, Maria L. ;
Szekely, Gabor J. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (08) :1742-1756
[8]   A new weighted integral goodness-of-fit statistic for exponentiality [J].
Baringhaus, L. ;
Henze, N. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (08) :1006-1016
[9]  
Bernstein SN., 1941, T LENINGRAD POLYTEKH, V3, P21
[10]   Bounds for the maximum likelihood estimates in two-parameter gamma distribution [J].
Dang, H ;
Weerakkody, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (01) :1-6