Iterative learning control for impulsive multi-agent systems with varying trial lengths

被引:3
作者
Cao, Xiaokai [1 ]
Feckan, Michal [2 ,3 ]
Shen, Dong [4 ]
Wang, Jin Rong [1 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[4] Renmin Univ China, Sch Math, Beijing, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2022年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
impulsive multi-agent system; consensus tracking; fractional iterative learning control; domain alignment operator; varying trial lengths; CONSENSUS; TRACKING;
D O I
10.15388/namc.2022.27.25475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each iteration. Then we analyze the system's uniform convergence to the target leader. Further, we use two local average operators to optimize the control function such that it can make full use of the iteration error. Finally, numerical examples are provided to verify the theoretical results.
引用
收藏
页码:445 / 465
页数:21
相关论文
共 32 条
[1]   Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1490-1500
[2]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[3]  
Bainov D., 1994, Series on Advances in Mathematics for Applied Sciences, V24, DOI [10.1142/2058, DOI 10.1142/2058]
[4]   Iterative learning control for multi-agent systems with impulsive consensus tracking [J].
Cao, Xiaokai ;
Feckan, Michal ;
Shen, Dong ;
Wang, JinRong .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01) :130-150
[5]  
Cao Y, 2017, IEEE T CYBERNETICS, V47, P2212, DOI 10.1109/TCYB.2016.2573138
[6]   Velocity-Observer-Based Distributed Finite-Time Attitude Tracking Control for Multiple Uncertain Rigid Spacecraft [J].
Cui, Bing ;
Xia, Yuanqing ;
Liu, Kun ;
Wang, Yujuan ;
Zhai, Di-Hua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2509-2519
[7]  
Hyo-Sung Ahn, 2009, 2009 ICROS-SICE International Joint Conference. ICCAS-SICE 2009, P3111
[8]   Adaptive iterative learning control for coordination of second-order multi-agent systems [J].
Li, Jinsha ;
Li, Junmin .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (18) :3282-3299
[9]   Adaptive iterative learning control for consensus of multi-agent systems [J].
Li, Jinsha ;
Li, Junmin .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01) :136-142
[10]   Two novel iterative learning control schemes for systems with randomly varying trial lengths [J].
Li, Xuefang ;
Shen, Dong .
SYSTEMS & CONTROL LETTERS, 2017, 107 :9-16