Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography

被引:57
作者
Wang, Jing [1 ]
Ma, Jianwei [1 ,3 ]
Han, Bo [1 ]
Li, Qin [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography (EIT); L-1-norm regularized reconstruction; Split Bregman iterations; BIOLUMINESCENCE TOMOGRAPHY; THRESHOLDING ALGORITHM; REGULARIZATION;
D O I
10.1016/j.sigpro.2012.05.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present an evaluation of the use of split Bregman iterative algorithm for the L-1-norm regularized inverse problem of electrical impedance tomography. Simulations are performed to validate that our algorithm is competitive in terms of the imaging quality and computational speed in comparison with several state-of-the-art algorithms. Results also indicate that in contrast to the conventional L-2-norm regularization method and total variation (TV) regularization method, the L-1-norm regularization method can sharpen the edges and is more robust against data noises. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2952 / 2961
页数:10
相关论文
共 32 条
[11]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[12]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[13]   SUPERRESOLUTION VIA SPARSITY CONSTRAINTS [J].
DONOHO, DL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) :1309-1331
[14]   Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization [J].
Gao, Hao ;
Zhao, Hongkai .
OPTICS EXPRESS, 2010, 18 (03) :1854-1871
[15]   Sparsity reconstruction in electrical impedance tomography: An experimental evaluation [J].
Gehre, Matthias ;
Kluth, Tobias ;
Lipponen, Antti ;
Jin, Bangti ;
Seppanen, Aku ;
Kaipio, Jari P. ;
Maass, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) :2126-2136
[16]   Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints [J].
Gholami, A. ;
Siahkoohi, H. R. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 180 (02) :871-882
[17]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[18]  
Jin B, 2012, ESAIM CONTR IN PRESS
[19]   A reconstruction algorithm for electrical impedance tomography based on sparsity regularization [J].
Jin, Bangti ;
Khan, Taufiquar ;
Maass, Peter .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (03) :337-353
[20]   An Interior-Point Method for Large-Scale l1-Regularized Least Squares [J].
Kim, Seung-Jean ;
Koh, K. ;
Lustig, M. ;
Boyd, Stephen ;
Gorinevsky, Dimitry .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :606-617