Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography

被引:57
作者
Wang, Jing [1 ]
Ma, Jianwei [1 ,3 ]
Han, Bo [1 ]
Li, Qin [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography (EIT); L-1-norm regularized reconstruction; Split Bregman iterations; BIOLUMINESCENCE TOMOGRAPHY; THRESHOLDING ALGORITHM; REGULARIZATION;
D O I
10.1016/j.sigpro.2012.05.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present an evaluation of the use of split Bregman iterative algorithm for the L-1-norm regularized inverse problem of electrical impedance tomography. Simulations are performed to validate that our algorithm is competitive in terms of the imaging quality and computational speed in comparison with several state-of-the-art algorithms. Results also indicate that in contrast to the conventional L-2-norm regularization method and total variation (TV) regularization method, the L-1-norm regularization method can sharpen the edges and is more robust against data noises. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2952 / 2961
页数:10
相关论文
共 32 条
[1]   Augmented Lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data [J].
Aelterman, Jan ;
Hiep Quang Luong ;
Goossens, Bart ;
Pizurica, Aleksandra ;
Philips, Wilfried .
SIGNAL PROCESSING, 2011, 91 (12) :2731-2742
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   Electrical impedance tomography [J].
Borcea, L .
INVERSE PROBLEMS, 2002, 18 (06) :R99-R136
[4]  
Borsic A., 2007, 92 U MANCH SCH MATH
[5]   In Vivo Impedance Imaging With Total Variation Regularization [J].
Borsic, Andrea ;
Graham, Brad M. ;
Adler, Andy ;
Lionheart, William R. B. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :44-54
[6]   SPLIT BREGMAN METHODS AND FRAME BASED IMAGE RESTORATION [J].
Cai, Jian-Feng ;
Osher, Stanley ;
Shen, Zuowei .
MULTISCALE MODELING & SIMULATION, 2009, 8 (02) :337-369
[7]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[8]   Electrical impedance tomography [J].
Cheney, M ;
Isaacson, D ;
Newell, JC .
SIAM REVIEW, 1999, 41 (01) :85-101
[9]   Electrical impedance tomography using level set representation and total variational regularization [J].
Chung, ET ;
Chan, TF ;
Tai, XC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) :357-372
[10]   Electrical Impedance Tomography Reconstruction Using l1 Norms for Data and Image Terms [J].
Dai, Tao ;
Adler, Andy .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :2721-2724