Dataset on a Benchmark for Equality Constrained Multi-objective Optimization

被引:2
|
作者
Cuate, Oliver [1 ]
Uribe, Lourdes [2 ]
Lara, Adriana [2 ]
Schutze, Oliver [1 ,3 ]
机构
[1] CINVESTAV IPN, Dept Comp Sci, Mexico City, DF, Mexico
[2] Inst Politecn Nacl, ESFM, Mexico City, DF, Mexico
[3] UAM Cuajimalpa, Mexico City, DF, Mexico
来源
DATA IN BRIEF | 2020年 / 29卷
关键词
Evolutionary computation; Multi-objective optimization; Equality constraints; Benchmarking;
D O I
10.1016/j.dib.2020.105130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this Data in Brief, we provide the source code for the equality constrained multi-objective optimization benchmark problems EqDTLZ 1-4 and EqIDTLZ 1-2 proposed in the research article "A Benchmark for Equality Constrained Multi-objective Optimization" [1]. Further, we provide the codes for the multi-objective evolutionary algorithms NSGA-II, NSGA-III, aNSGA-III, GDE3, MOEA/D/D and PPS and their numerical approximations on the above mentioned test functions. All codes are provided in Matlab using the PlatEMO classes version 2.0 in order to test different algorithms. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system
    Sayyaadi, Hoseyn
    APPLIED ENERGY, 2009, 86 (06) : 867 - 879
  • [42] Evolutionary robustness analysis for multi-objective optimization: benchmark problems
    Gaspar-Cunha, Antonio
    Ferreira, Jose
    Recio, Gustavo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (05) : 771 - 793
  • [43] Toward scalable benchmark problems for multi-objective multidisciplinary optimization
    Johnson, Victoria
    Duro, Joao A.
    Kadirkamanathan, Visakan
    Purshouse, Robin C.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 133 - 140
  • [44] Multi-objective optimization algorithms for building performance assessment - A benchmark
    da Silva, Mario Alves
    Garcia, Rafael de Paula
    Carlo, Joyce Correna
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2024,
  • [45] Evolutionary robustness analysis for multi-objective optimization: benchmark problems
    António Gaspar-Cunha
    Jose Ferreira
    Gustavo Recio
    Structural and Multidisciplinary Optimization, 2014, 49 : 771 - 793
  • [46] A benchmark test problem toolkit for multi-objective path optimization
    Hu, Xiao-Bing
    Zhang, Hai-Lin
    Zhang, Chi
    Zhang, Ming-Kong
    Li, Hang
    Leeson, Mark S.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 18 - 30
  • [47] Dynamic Constrained Multi-objective Model for Solving Constrained Optimization Problem
    Zeng, Sanyou
    Chen, Shizhong
    Zhao, Jiang
    Zhou, Aimin
    Li, Zhengjun
    Jing, Hongyong
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2041 - 2046
  • [48] Sensitivity Analysis for Multi-Objective Optimization of the Benchmark TEAM Problem
    Seo, Minsik
    Ryu, Namhee
    Min, Seungjae
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)
  • [49] A Benchmark-Suite of real-World constrained multi-objective optimization problems and some baseline results
    Kumar, Abhishek
    Wu, Guohua
    Ali, Mostafa Z.
    Luo, Qizhang
    Mallipeddi, Rammohan
    Suganthan, Ponnuthurai Nagaratnam
    Das, Swagatam
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 67
  • [50] A dynamic tri-population multi-objective evolutionary algorithm for constrained multi-objective optimization problems
    Yang, Yongkuan
    Yan, Bing
    Kong, Xiangsong
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (04) : 2791 - 2806