Dataset on a Benchmark for Equality Constrained Multi-objective Optimization

被引:2
|
作者
Cuate, Oliver [1 ]
Uribe, Lourdes [2 ]
Lara, Adriana [2 ]
Schutze, Oliver [1 ,3 ]
机构
[1] CINVESTAV IPN, Dept Comp Sci, Mexico City, DF, Mexico
[2] Inst Politecn Nacl, ESFM, Mexico City, DF, Mexico
[3] UAM Cuajimalpa, Mexico City, DF, Mexico
来源
DATA IN BRIEF | 2020年 / 29卷
关键词
Evolutionary computation; Multi-objective optimization; Equality constraints; Benchmarking;
D O I
10.1016/j.dib.2020.105130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this Data in Brief, we provide the source code for the equality constrained multi-objective optimization benchmark problems EqDTLZ 1-4 and EqIDTLZ 1-2 proposed in the research article "A Benchmark for Equality Constrained Multi-objective Optimization" [1]. Further, we provide the codes for the multi-objective evolutionary algorithms NSGA-II, NSGA-III, aNSGA-III, GDE3, MOEA/D/D and PPS and their numerical approximations on the above mentioned test functions. All codes are provided in Matlab using the PlatEMO classes version 2.0 in order to test different algorithms. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A benchmark for equality constrained multi-objective optimization
    Cuate, Oliver
    Uribe, Lourdes
    Lara, Adriana
    Schutze, Oliver
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 52
  • [2] Equality Constrained Multi-Objective Optimization
    Saha, Amit
    Ray, Tapabrata
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [3] A Note on Constrained Multi-Objective Optimization Benchmark Problems
    Tanabe, Ryoji
    Oyama, Akira
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1127 - 1134
  • [4] A Generator for Scalable SAT Constrained Multi-Objective Optimization Benchmark Problems
    Ide, Felipe Honjo
    Aguirre, Hernan
    Miyakawa, Minami
    Whitley, Darrell
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [5] Benchmark problems for large-scale constrained multi-objective optimization with baseline results
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Guo, Weifeng
    Yue, Caitong
    Qu, Boyang
    Suganthan, P. N.
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [6] A Comparative Study of Constrained Multi-objective Evolutionary Algorithms on Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Fang, Yi
    Lu, Jiewei
    Wei, Caimin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 209 - 216
  • [7] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [8] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [9] A Bayesian Approach to Constrained Multi-objective Optimization
    Feliot, Paul
    Bect, Julien
    Vazquez, Emmanuel
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 9, 2015, 8994 : 256 - 261
  • [10] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):