Compact Commutators of Calderon-Zygmund and Generalized Fractional Integral Operators with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces

被引:13
作者
Arai, Ryutaro [1 ]
Nakai, Eiichi [1 ]
机构
[1] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
基金
日本学术振兴会;
关键词
Morrey space; Campanato space; variable growth condition; singular integral; fractional integral; commutator; POINTWISE MULTIPLIERS; HARDY-SPACES; INEQUALITIES;
D O I
10.3836/tjm/1502179285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the commutators [b, T] and [b, I-rho], where T is a Calderon-Zygmund operator, I-rho is a generalized fractional integral operator and b is a function in Campanato spaces with variable growth condition. It is known that these commutators are bounded on generalized Money spaces with variable growth condition. In this paper we discuss the compactness of these commutators.
引用
收藏
页码:471 / 496
页数:26
相关论文
共 43 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]   Commutators of Caldern-Zygmund and generalized fractional integral operators on generalized Morrey spaces [J].
Arai, Ryutaro ;
Nakai, Eiichi .
REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (02) :287-331
[3]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[4]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[5]  
DIFAZIO G, 1991, B UNIONE MAT ITAL, V5A, P323
[6]   CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES [J].
Eridani ;
Gunawan, Hendra ;
Nakai, Eiichi ;
Sawano, Yoshihiro .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :761-777
[7]  
Eridani A., 2004, SCI MATH JPN, V60, P539
[8]   GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES [J].
Fu, Xing ;
Yang, Dachun ;
Yuan, Wen .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02) :509-557
[9]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[10]   FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES [J].
Gunawan, H. ;
Sawano, Y. ;
Sihwaningrum, I. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) :324-334