Rapid Determination of Fretting Fatigue Limit by Infrared Thermography

被引:5
作者
Chhith, S. [1 ,2 ]
De Waele, W. [1 ]
De Baets, P. [1 ,2 ]
机构
[1] Univ Ghent, Dept Elect Energy Met Mech Construct & Syst, Soete Lab, Technol Pk 903, B-9052 Ghent, Belgium
[2] Flanders Make, Strateg Res Ctr Mfg Ind, Ghent, Belgium
关键词
Fatigue limit; Fretting fatigue; Thermography; Fast Fourier Transform; Second harmonic; CRACK INITIATION; BEHAVIOR; DAMAGE; METHODOLOGY; PREDICTION; COMPONENTS; FAILURE;
D O I
10.1007/s11340-017-0340-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper demonstrates the feasibility of infrared thermography to determine the so-called fretting fatigue limit. Fretting fatigue tests are performed on aluminum and steel specimens. The coupled fatigue and tangential loads are sequentially increased (block loading) whilst the normal load is kept constant for all blocks. The temperature data is processed and analyzed using a Fast Fourier Transform (FFT) algorithm implemented in the commercial software Matlab. It is demonstrated that the second harmonic of the temperature signal can be linked to the specific loading block below which no or negligible damage is generated in the specimen. The stress amplitude of this block is considered to be a best estimate of the fretting fatigue limit. A constant amplitude fretting fatigue test with this stress amplitude confirmed that the specimen remains intact at 10(7) cycles.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 35 条
[11]  
De Pauw J, 2013, J SUSTAIN CONSTR DES, V4, P6
[12]   Rapid determination of the fatigue curve by the thermographic method [J].
Fargione, G ;
Geraci, A ;
La Rosa, G ;
Risitano, A .
INTERNATIONAL JOURNAL OF FATIGUE, 2002, 24 (01) :11-19
[13]   Evaluation of nondestructive testing methods for the detection of fretting damage [J].
Forsyth, David S. ;
Genest, Marc ;
Shaver, Jason ;
Mills, Thomas B. .
INTERNATIONAL JOURNAL OF FATIGUE, 2007, 29 (05) :810-821
[14]   Prediction of fretting crack propagation based on a short crack methodology [J].
Fouvry, S. ;
Nowell, D. ;
Kubiak, K. ;
Hills, D. A. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (06) :1605-1622
[15]   Quantification of fretting damage [J].
Fouvry, S ;
Kapsa, P ;
Vincent, L .
WEAR, 1996, 200 (1-2) :186-205
[16]   Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy [J].
Giancane, S. ;
Chrysochoos, A. ;
Dattoma, V. ;
Wattrisse, B. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2009, 52 (02) :117-121
[17]   Growth of fretting fatigue cracks in a shrink-fitted joint subjected to rotating bending [J].
Gutkin, R. ;
Alfredsson, B. .
ENGINEERING FAILURE ANALYSIS, 2008, 15 (05) :582-596
[18]   The analysis and prevention of failure in railway axles [J].
Hirakawa, K ;
Toyama, K ;
Kubota, M .
INTERNATIONAL JOURNAL OF FATIGUE, 1998, 20 (02) :135-144
[19]   Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration [J].
Hojjati-Talemi, Reza ;
Wahab, Magd Abdel ;
De Pauw, Jan ;
De Baets, Patrick .
TRIBOLOGY INTERNATIONAL, 2014, 76 :73-91
[20]   Non-propagating crack behaviour at giga-cycle fretting fatigue limit [J].
Kondo, Y ;
Sakae, C ;
Kubota, M ;
Yanagihara, K .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2005, 28 (06) :501-506