Properties of non-hermitian quantum field theories

被引:3
作者
Bender, CM [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
CPT; non-hermitian;
D O I
10.5802/aif.1971
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under CPT, but not symmetric under P and T separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are -phi(4) and iphi(3) theories. These theories all have unexpected and remarkable properties. I discuss the Green's functions for these theories and present new results regarding bound states, renormalization, and nonperturbative calculations.
引用
收藏
页码:997 / +
页数:14
相关论文
共 15 条
[1]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[2]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[3]   Two-point Green's function in PT-symmetric theories [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN ;
Wang, QH .
PHYSICS LETTERS A, 2002, 302 (5-6) :286-290
[4]   Bound states of non-Hermitian quantum field theories [J].
Bender, CM ;
Boettcher, S ;
Jones, HF ;
Meisinger, PN ;
Simsek, M .
PHYSICS LETTERS A, 2001, 291 (4-5) :197-202
[5]   Generalized PT symmetry and real spectra [J].
Bender, CM ;
Berry, MV ;
Mandilara, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :L467-L471
[6]   Calculation of the one-point Green's function for a-gφ4 quantum field theory -: art. no. 045001 [J].
Bender, CM ;
Meisinger, PN ;
Yang, HT .
PHYSICAL REVIEW D, 2001, 63 (04)
[7]   Quantum complex Henon-Heiles potentials [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN ;
Simsek, M .
PHYSICS LETTERS A, 2001, 281 (5-6) :311-316
[8]   A NEW PERTURBATIVE APPROACH TO NONLINEAR PROBLEMS [J].
BENDER, CM ;
MILTON, KA ;
PINSKY, SS ;
SIMMONS, LM .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1447-1455
[9]  
BENDER CM, 2002, QUANTPH0208076
[10]  
DOREY P, J PHYS A, V34, P5679