A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device

被引:290
作者
Fan, Ling [1 ]
Lin, Kairui [2 ]
Wang, Jue [1 ]
Ma, Ruifang [1 ]
Lu, Bingan [1 ,3 ,4 ,5 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[2] Quanzhou Fifth High Sch ChengDong, Quanzhou 362000, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China
[4] Mat Technol Co Ltd, Wing Lok St, Sheung Wan 999077, Hong Kong, Peoples R China
[5] Fujian Strait Res Inst Ind Graphene Technol, Jinjang 362200, Peoples R China
基金
中国国家自然科学基金;
关键词
batteries; battery-supercapacitor hybrid devices; nonaqueous batteries; potassium ion electrolytes; supercapacitors; PRUSSIAN WHITE ANALOGS; RESEARCH PROGRESS; ION BATTERIES; HIGH-CAPACITY; LOW-COST; CATHODE; SODIUM; INTERCALATION; ELECTROLYTE; SULFUR;
D O I
10.1002/adma.201800804
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A low cost nonaqueous potassium-based battery-supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro-slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg(-1), a high power density of 599 W kg(-1), a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Electrolyte design strategies and research progress for room-temperature sodium-ion batteries [J].
Che, Haiying ;
Chen, Suli ;
Xie, Yingying ;
Wang, Hong ;
Amine, Khalil ;
Liao, Xiao-Zhen ;
Ma, Zi-Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1075-1101
[2]   Organic electrode for non-aqueous potassium-ion batteries [J].
Chen, Yanan ;
Luo, Wei ;
Carter, Marcus ;
Zhou, Lihui ;
Dai, Jiaqi ;
Fu, Kun ;
Lacey, Steven ;
Li, Tian ;
Wan, Jiayu ;
Han, Xiaogang ;
Bao, Yanping ;
Hu, Liangbing .
NANO ENERGY, 2015, 18 :205-211
[3]   Kinetically controlled formation of uniform FePO4 shells and their potential for use in high-performance sodium ion batteries [J].
Duan, Shu-Yi ;
Piao, Jun-Yu ;
Zhang, Tian-Qi ;
Sun, Yong-Gang ;
Liu, Xiao-Chan ;
Cao, An-Min ;
Wan, Li-Jun .
NPG ASIA MATERIALS, 2017, 9 :e414-e414
[4]   Potassium Secondary Batteries [J].
Eftekhari, Ali ;
Jian, Zelang ;
Ji, Xiulei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4404-4419
[5]   Potassium-Based Dual Ion Battery with Dual-Graphite Electrode [J].
Fan, Ling ;
Liu, Qian ;
Chen, Suhua ;
Lin, Kairui ;
Xu, Zhi ;
Lu, Bingan .
SMALL, 2017, 13 (30)
[6]   Soft Carbon as Anode for High-Performance Sodium-Based Dual Ion Full Battery [J].
Fan, Ling ;
Liu, Qian ;
Chen, Suhua ;
Xu, Zhi ;
Lu, Bingan .
ADVANCED ENERGY MATERIALS, 2017, 7 (14)
[7]   An Organic Cathode for Potassium Dual-Ion Full Battery [J].
Fan, Ling ;
Liu, Qan ;
Xu, Zhi ;
Lu, Bingan .
ACS ENERGY LETTERS, 2017, 2 (07) :1614-1620
[8]   Covalent sulfur for advanced room temperature sodium-sulfur batteries [J].
Fan, Ling ;
Ma, Ruifang ;
Yang, Yuhua ;
Chen, Suhua ;
Lu, Bingan .
NANO ENERGY, 2016, 28 :304-310
[9]   Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries [J].
Fan, Ling ;
Lu, Bingan .
SMALL, 2016, 12 (20) :2783-2791
[10]   CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Zhang, Qing ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (43)