Bayesian wavelet-based image estimation using noninformative priors

被引:5
作者
Figueiredo, MAT [1 ]
Nowak, RD [1 ]
机构
[1] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
来源
MATHEMATICAL MODELING, BAYESIAN ESTIMATION, AND INVERSE PROBLEMS | 1999年 / 3816卷
关键词
image denoising; image estimation; wavelets; Bayesian estimation; non-informative priors; Jeffreys' priors; invariance; hierarchical Bayes; empirical Bayes; shrinkage;
D O I
10.1117/12.351304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these deficiencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach based on Jeffreys' non-informative priors. Our approach is a step towards objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed non-linear shrinkage/thresholding rule which performs better than other more computationally demanding methods.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 31 条
[11]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[12]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[13]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[14]  
Field D. J, 1993, WAVELETS FRACTALS FO, P151
[15]  
Figueiredo MAT, 1998, CONF REC ASILOMAR C, P1368, DOI 10.1109/ACSSC.1998.751550
[16]   Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle [J].
Figueiredo, MAT ;
Leitao, JMN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (08) :1089-1102
[17]  
Gao HY, 1997, STAT SINICA, V7, P855
[18]  
Gao HY, 1998, J COMPUT GRAPH STAT, V7, P469
[19]  
HYVARINEN A, 1998, P IEEE INT JOINT C N, P859
[20]  
KRIM H, 1999, IN PRESS IEEE T INFO