Bayesian wavelet-based image estimation using noninformative priors

被引:5
作者
Figueiredo, MAT [1 ]
Nowak, RD [1 ]
机构
[1] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
来源
MATHEMATICAL MODELING, BAYESIAN ESTIMATION, AND INVERSE PROBLEMS | 1999年 / 3816卷
关键词
image denoising; image estimation; wavelets; Bayesian estimation; non-informative priors; Jeffreys' priors; invariance; hierarchical Bayes; empirical Bayes; shrinkage;
D O I
10.1117/12.351304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these deficiencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach based on Jeffreys' non-informative priors. Our approach is a step towards objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed non-linear shrinkage/thresholding rule which performs better than other more computationally demanding methods.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 31 条
[1]  
ABRAMOVICH F, 1998, J ROYAL STAT SOC B, V60
[2]  
[Anonymous], 1997, ESSENTIAL WAVELETS S, DOI DOI 10.1007/978-1-4612-0709-2
[3]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[4]  
Bernardo J.M., 2009, Bayesian Theory, V405
[5]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[6]  
BRILLINGER DR, 1996, NONPARAMETRIC STAT, V6, P93
[7]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[8]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421
[9]  
Coifman R. R., 1995, LECT NOTES STAT, V103, P125, DOI [10.1002/cpa.3160410705, DOI 10.1002/CPA.3160410705, DOI 10.1007/978-1-4612-2544-7_9]
[10]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314